Руководству по проектированию оснований и фундаментов на пучинистых грунтах

Статус:действующий Обозначение:Руководство Название рус.:Руководство по проектированию оснований и фундаментов на пучинистых грунтахДата обновления текста:01.03.2008Дата добавления в библиотеку:22.06.2008Дата введения в действие:01.01.1979Разработан в:НИИОСП им. Н.М. Герсеванова Госстроя СССР 109428, г. Москва, 2-я Институтская, 6Утверждён в:НИИОСП им. Герсеванова Госстроя СССР (01.01.1979)Опубликован в:Стройиздат № 1979Область и условия применения:Руководство составлено по результатам теоретических и экспериментальных исследований деформаций и сил морозного пучения грунтов и материалам обобщения передового опыта фундаментостроения на пучинистых грунтах.
Предназначено для инженерно-технических работников проектных и строительных организаций.Оглавление:ПРЕДИСЛОВИЕ
1. ОБЩИЕ ПОЛОЖЕНИЯ
2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО ПРОЕКТИРОВАНИЮ
3. ИНЖЕНЕРНО-МЕЛИОРАТИВНЫЕ МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ДЕФОРМАЦИИ ОТ ДЕЙСТВИЯ СИЛ МОРОЗНОГО ПУЧЕНИЯ ГРУНТОВ
4. СТРОИТЕЛЬНО-КОНСТРУКТИВНЫЕ МЕРОПРИЯТИЯ ПРОТИВ ДЕФОРМАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ ПРОМЕРЗАНИИ И ПУЧЕНИИ ГРУНТОВ
5. ТЕПЛОВЫЕ И ХИМИЧЕСКИЕ МЕРОПРИЯТИЯ ПРОТИВ ДЕЙСТВИЯ СИЛ МОРОЗНОГО ПУЧЕНИЯ
6. МЕРОПРИЯТИЯ ПО ПРЕДОТВРАЩЕНИЮ ВЫПУЧИВАНИЯ НЕЗАГЛУБЛЯЕМЫХ И МАЛОЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ
7. ТЕПЛОИЗОЛЯЦИОННЫЕ МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ГЛУБИНЫ ПРОМЕРЗАНИЯ ГРУНТОВ И НОРМАЛЬНЫХ СИЛ МОРОЗНОГО ВЫПУЧИВАНИЯ МАЛОЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ
8. УКАЗАНИЯ К ПРОИЗВОДСТВУ СТРОИТЕЛЬНЫХ РАБОТ ПО НУЛЕВОМУ ЦИКЛУ
9. МЕРОПРИЯТИЯ НА ПЕРИОД ЭКСПЛУАТАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПО ЗАЩИТЕ ГРУНТОВ В ОСНОВАНИИ ОТ ИЗБЫТОЧНОГО ВОДОНАСЫЩЕНИЯcatalog.cgi?c=1&f2=3&f1=II003′> Справочные пособия к СНиП

Как только у владельца земельного участка появляется идея по застройке земли – чаще всего он начинает выбирать проект, рассчитывать площадь и количество материалов. Но до начала строительства важно знать, какой грунт будет нести Ваш фундамент. Существует множество разновидностей грунтов, которые классифицируют строители: скальные, крупнообломочные виды, глинистые, песчаные, плывуны и пр. И для каждого вида есть своя методика застройки.

Разновидность грунтов, подвергающаяся постоянной деформации при вариации погодных условий, способствующих смене агрегатных состояний грунтовых вод, называется пучинистыми грунтами. На такой земле очень сложно спроектировать будущее здание, так как ее особенности будут требовать от строителя дополнительных мер по укреплению фундамента и точности в расчётах. Пучинистости наиболее подвержены пылеватые грунты, в составе которых обычно присутствует глина, гравий, и галька. Менее склонны к этому процессу дисперсные грунты (со свободной влагой) и песчаные. Понятие степени пучинистости определяет меры борьбы с ней. О том, как противостоять процессу нежелательной деформации строений под воздействием вышеописанного явления мы и опишем в данной статье.

Содержание

Что означает понятие «морозное пучение»?

Морозное пучение (а. frost heaving) — это процесс неравномерного поднятия почвы и разуплотнения в ней минеральных частиц (скелетной структуры земли) при изменении агрегатного состояния грунтовых вод. Влага, находящаяся в грунтах, расширяется при фазовом переходе и таким образом изнутри разрывает структуру почвы. Строить что-либо на такой земле не только не целесообразно экономически, но и опасно.

Сам процесс морозного пучения подразделяется на:

  • Сезонное – происходит после оттаивания промерзших пластов земли после зимы;
  • Многолетнее – происходит при наслоении мерзлых пород.

В первом случае, почвы покрываются так называемыми «пучинами» — буграми, толщиной в пару десятков сантиметров и шириной в диаметре около 1 метра. Иногда образуются и огромные участки бугров, до 10 метров в диаметре.

руководству по проектированию оснований и фундаментов на пучинистых грунтахВо втором случае, многолетние наслоения уже становятся частью мезорельефа почвы и в какой-то степени не так опасны для фундамента, как частые деформации при сезонном пучении.

Степень пучения можно определить и по приближенной формуле:

Е = (H-h) /h,

E – степень пучинистости грунта;

h – средняя высота грунта до начала замораживания;

H — средняя высота грунта после вспучивания.

Если данная величина будет превышать значение 0,01 – значит пучинистость земли присутствует.

Но для начала строительства необходимо точно знать, к какой степени пучинистости относится Ваш участок.

Существует некая классификация различных видов земли по степеням подверженности пучения.

  •  Со средней пучинистостью. К этой группе относятся влажные грунты, в основном составе которых глина с высоким показателем природной влажности, суглинок, пылевые пески (при значительном превышении нормального уровня стояния грунтовых вод).
  • Со слабой пучинистостью. В этой группе грунт с наполнением из пылеватых песков, суглинков и маловлажной глины.( при значительном превышении нормального уровня стояния грунтовых вод)
  • Непучинистые. Тут в составе присутствуют твердые глинистые пласты и крупнообломочный тип грунтов с пылевато-глинистым наполнением. В основном это скальные грунты, крупные и средние гравелистые пески.

    руководству по проектированию оснований и фундаментов на пучинистых грунтах

Если Вы решитесь закладывать фундамент на такой земле, но не уверены в своих знаниях — более точную классификацию может дать профессиональный строитель. Эта информация поможет в расчёте необходимых мер по проектированию строения с учетом пучения. Но в целом, если рассчитанный коэффициент не велик, то можно отталкиваться от степени влажности и уровня застоя грунтовых вод в период до начала зимы и весной.

 Способы проектирования фундамента на пучинистых грунтах

1.            С помощью дренажа

Но для получения желаемого эффекта, нужно делать глубинный дренаж. Процесс дренажа включает в себя несколько этапов: Данный метод борьбы с пучением основан на принципе: нет воды – нет проблем. Помимо того, что после дренажа Вы сможете без труда строить на пучинистом грунте, он даст еще и дополнительный бонус в виде защиты от сезонного затопления стен и пола грунтовыми водами. Особенно полезен этот метод на участках земли, расположенных над шахтными коммуникациями или на сильно наводненной почве.

  • Определения уровня вод. Для этого предварительно роется яма, глубиной около 2, 5 метра. По срезу пласта Вы легко сможете определить тип почвы согласно классификации, а также увидеть уровень вод.
  •  Заготовка канавы по периметру здания. Когда Вы уже знаете, какой уровень воды присутствует на участке, можно определиться и с типом дренажа. Канава может делаться как вплотную прилегая к дому, так и с отступом – методика будет зависеть от вида фундамента. При проектировании дренажа лучше воспользоваться услугами опытных строителей, так как их опыт сможет предостеречь от серьезных ошибок, приводящих к разрушению здания.
  • Когда канава готова, на дно можно заранее уложить геотекстиль, чтобы на него было удобней засыпать щебень (фракцией 20-40 мм) либо битый кирпич в качестве водопроницаемого наполнителя. Можно засыпать щебень сразу, но тогда нужно будет обернуть геотекстилем сами трубы.
  • Щебень засыпается до уровня не более 20 см.руководству по проектированию оснований и фундаментов на пучинистых грунтах
  •  Трубы выкладываются под уклоном 5-10 градусов в направлении уклона участка, на глубине не более 30 см от подошвы фундамента.
  • В дополнение к трубам, в специально отведенных заранее местах траншеи, устанавливаются специальные колодцы (смотровые).руководству по проектированию оснований и фундаментов на пучинистых грунтах
  • Вся система в итоге сводится к большому поглотительному колодцу, примерно 0,7 м глубиной. Колодец обустраивается по тому же принципу, что и канавы, только вместо труб в него ставится большая пластиковая бочка с множественными небольшими отверстиями.
  • По итогу, траншея засыпается наполнителем, пропускающим воду (например, речным крупнозернистым песком) для дополнительной фильтрации и уплотнения канавы.

Преимущества этого способа борьбы с пучинистостью грунтов заключаются в дополнительной защите дома от неприятных последствий водянистости почв, таких как:

  • затопление подвалов и погребов;
  • заплесневение помещения;
  •  отсыревание стен и пола.

2.            Закладка фундамента ниже уровня промерзания

Если точно определить характер грунта и его физические свойства, то можно воспользоваться таким методом, как закладка фундамента ниже уровня промерзания. Обычно, такой метод в результате оказывается не самым эффективным и дорогостоящим, но если Вы планируете строить каменный дом, либо дом будет иметь очень прочный каркас, то подобные меры предотвратят прямое воздействие пучения на строение. Косвенное воздействие все равно останется, так как боковое трение пучинистого грунта о стены постройки может вызвать неудобства в виде смещения уровня стен, заклинивания дверей и окон и пр. Но если каркас будет рассчитан правильно, и сила воздействия деформирующихся пластов будет недостаточной для смещения стен, то эти явления возможно предотвратить.

3.            Утепление

В случае, если Вы хотите строить деревянный дом — то здесь как раз подойдет утепление его основания, как способ борьбы с пучением грунтов. Вкратце, на этапе перед заливанием самого фундамента, в яму закладывают утепляющий материал, равный по толщине высоте пласта промерзания грунта. Как рассчитать параметры утеплителя, можно узнать из справочных материалов, либо воспользоваться советом профессионала. Когда фундамент уложен и забетонирован, он изолируется от воды, после чего тоже утепляется.

руководству по проектированию оснований и фундаментов на пучинистых грунтах

4.            Замена грунта

Последний и самый дорогостоящий метод – замена типа грунта на участке. По самому названию уже понятен сам процесс реализации метода. Несмотря на радикальность, такой способ очень эффективен. В начале, выполняется первый этап второго метода – выкапывание пласта почвы, подверженной деформациям. Далее, раскопанный котлован засыпают материалом, который можно выбрать из справочных пособий по строительству, делая упор на самую низкую степень пучинистости. Чаще всего используется крупнозернистый речной или карьерный песок, главное, чтобы он имел высокий уровень фильтрации. После утрамбовки, Вы будете иметь готовую основу под заливку фундамента. Но в связи с дороговизной работ по раскапыванию и вывозу земли, данный способ не сильно пользуется популярностью.

Дата актуализации: 01.01.2018

Руководство по проектированию оснований и фундаментов на вечномерзлых грунтах

Статус: действует
Название рус.: Руководство по проектированию оснований и фундаментов на вечномерзлых грунтах
Дата добавления в базу: 01.09.2013
Дата актуализации: 01.01.2018
Область применения: В Руководстве рассматриваются вопросы проектирования оснований и фундаментов на вечномерзлых грунтах, включая сильно льдистые, засоленные и заторфованные грунты, а также подземные льды; учитываются особенности проектирования в сейсмических районах.
Оглавление: Предисловие
1 Общие положения
2 Номенклатура грунтов основания
3 Основные положения проектирования оснований и фундаментов
4 Расчет оснований и фундаментов
5 Особенности проектирования оснований и фундаментов на засоленных вечномерзлых грунтах
6 Особенности проектирования оснований и фундаментов на сильнольдистых вечномерзлых грунтах и подземных льдах
7 Особенности проектирования оснований и фундаментов на заторфованных вечномерзлых грунтах
8 Особенности проектирования оснований и фундаментов на вечномерзлых грунтах сейсмических районах
9 Особенности проектирования оснований и фундаментов мостов и водопропускных труб
Приложение
Разработан: НИИ оснований им. Н.М. Герсеванова
Издан: Стройиздат (1980 г. )
Расположен в: Техническая документация Экология ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО Земляные работы. Выемка грунта. Сооружение фундаментов. Подземные работы Фундаменты СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И СТРОИТЕЛЬСТВО Строительство Строительство в целом Строительство Справочные документы Директивные письма, положения, рекомендации и др.
Нормативные ссылки:
  • СНиП II-18-76 «Основания и фундаменты на вечномерзлых грунтах. Нормы проектирования»

Вечномёрзлый грунт

К вечномёрзлым грунтам относят мёрзлые почвы, которые находятся в этом состоянии на протяжении многих десятков лет и более. Ареалы с таким грунтовым основанием занимают значительные территории в России, Канаде, Аляске и Антарктиде. По приблизительным подсчётам вечная мерзлота занимает около четверти всей суши на Земле. В России такие земли распространены на более трети всей территории страны. Это преимущественно северные и северо-восточные районы. Строительство зданий и сооружений, особенно возведение фундаментов в этих местах, имеет свою специфику.

Особенности вечномёрзлых грунтов

Возведённые фундаменты на вечномёрзлых грунтах (ВГ) имеют свои отличия из-за особых механических свойств геологических оснований. Признак вечномёрзлого грунта наблюдается при проведении изыскательских работ в наполненной льдом почве, толще покрова, зонах тектонических сдвигов.

Несущая способность ВГ зависит от механических свойств, так называемого «льдоцемента», изменения температурных циклов и прочих явлений. Чтобы произвести расчёт фундамента на вечномёрзлом грунте, необходимо произвести ряд геологических и мерзлотных изыскательских исследований.

Вечномёрзлые грунты скреплены, пронизывающими льдо-цементными связями, которые представляют собой вытянутые прожилки изо льда, проходящие через массив почвы как в вертикальной, так и в горизонтальной плоскости. Во время наступления тёплого сезона льдо-цементные связи могут частично разрушаться (просто таять). В результате несущая способность грунтового основания существенно падает. В районах с такими условиями почва непригодна для строительства.

Большая площадь территорий ВГ существенно не меняют показатели несущей способности в зависимости от сезонных перепадов температуры воздуха. Для таких районов разработаны различные технологии возведения фундаментов для зданий и сооружений.

Территории с зонами вечной мерзлоты

Рассматривая толщу мёрзлых пород с точки зрения физико-механических свойств, выделяют 3 зоны:

  1. Верхние (покровные) отложения, содержащие в основной массе лёд.
  2. Коренная почва в области выветривания.
  3. Коренные породы, находящиеся в зоне горизонтов под мерзлотой.

Определение этих зон имеет большое влияние на получение результатов изыскательских работ. Толщина каждой области ВГ зависит от двух показателей – это геологическая структура и местный климат в:

  • горных районах со складчатым рельефом толщина верхней зоны ВГ изменяется снизу вверх рельефа от 1 – 3 м до 20 м;
  • поймах некоторых сибирских рек эта величина достигает от 100 до 200 м. В пойме реки Яна (Якутия) толщина верхней зоны превышает отметку 200 м;
  • прибрежных районах Восточно-Сибирского моря мощность покровной зоны может составлять нескольких сотен метров.

Проведение изыскательских работ

Типы вечномёрзлых грунтов

К ВГ относят геологическую толщу, находящуюся в замёрзшем виде на протяжении нескольких тысяч лет. Характеристика и толщина слоёв ВГ в основном предопределены местными уровнем промерзания и годовой средней температурой окружающей среды. Поэтому в некотором районе на соседних участках толщины мёрзлого грунта могут существенно различаться или вообще отсутствовать.

ВГ по строению текстуры различают на несколько типов:

  • слитная;
  • слоистая;
  • ячеистая (криогенная).

Слитная

Такая текстура ВГ состоит в основном из льдоцемента с отсутствием крупных включений. Изредка в такой почве встречаются мелкие гнездовые ледяные вкрапления. В большинстве случаев данная структура преобладает в крупнообломочных, гравелистых ипесчаных грунтах.

Слоистая

Мёрзлоестроение такого типа наблюдается в глинистых и песчаных пылеватых почвах. Такое свойство текстуры обычно встречается в наземных массивах ВГ толщиной от 12 до 27 м и более. Слоистое строение ВГ формируется в результате одностороннего замерзания переувлажнённой почвы, подпитанной миграционным водным подтоком из нижерасположенных слоев грунта. Такое основание практически не пригодно для строительства.

Ячеистая

Сетчатое строение ВГ это результат промерзания глинистых пылеватых грунтов. Этому способствует сильное переувлажнение массива со свободным подтоком воды. Грунты с ячеистой структурой обычно располагаются в верхней части деятельных слоёв.

Выбор строительной площадки

Местоположение строительной площадки определяется в соответствии с назначением возводимого здания и типом его конструкций. Строительная площадка выбирается без наличия наледи и отсутствия паводковых вод.

Участки земли, расположенные у подножия гор, зачастую насыщены наледями, вздутиями пучинистых грунтов и глубинными прожилками льда. На пологих склонах такие явления не наблюдаются. Такие участки наиболее приемлемы для строительства.

Для оценки пригодности участка под строительство производят геодезическую съёмку. Также делают съёмку окружающей местности. Это позволит обрисовать всю картину направления естественных водных потоков, возможность их отвода и устройства канализационных каналов.

Фундаменты на ВГ

К строительству зданий и сооружений, возведению фундаментов на ВГ предъявляют специальные требования. Это вызвано особыми характеристиками грунтовых оснований. Проектирование фундаментных оснований выполняют на основании проведённых инженерно-геологических изысканий. Изыскательские работы на ВГ называют геокриологическими.

В основном фундаменты на вечной мерзлоте проектируют глубоко заглублёнными основаниями. К таким основаниям относятся сваи. За редким исключением возводят ленточные и столбчатые фундаменты.

Инженерно-геологические изыскания

В расчётах несущей способности и особенностей конструкций оснований зданий и сооружений на ВГ используют данные результатов геокриологических исследований. Исследованиями занимаются специализированные проектные организации в соответствии с нормативной документацией. Нормативные документы включают в себя СНиПы, Госстандарт и другие рекомендации.

Результаты геокриологических изысканий включают в себя:

  • характеристики геокриологических данных места строительства – площадь и глубина залегания ВГ, средняя температура, высота сезонного оттаивания грунта, уровень грунтовых вод и прочее;
  • данные лабораторных исследований и испытаний образцов грунта в полевых условиях. На основании их делают выводы о механическом свойстве грунта как в мёрзлом, так и в талом состоянии, литологическом виде;
  • результаты прогнозирования изменений мерзлотного и гидрогеологического состояния грунта в зависимости от сезонных изменений температур, толщины снеговых осадков, высоты деятельного слоя.

Принципы проектирования оснований строений на вечномёрзлых грунтах

Сегодня проектировщики для расчёта фундаментных оснований на ВГ применяют два основных метода проектирования фундаментов на многолетних мёрзлых грунтах (М.М).

Первый метод

Основан метод на сохранении температуры ВГ,не давая возможности оттаивания мерзлоты. Такой способ проектирования используют для районов с залеганием мощных пластов многолетних мёрзлых грунтов. Основные принципы метода были разработаны и осуществлены во втором десятилетии ХХ века. Хотя многие дома и строения в таких городах, как Иркутск, Чита и Хабаровск, были спроектированы и построены по такому принципу ещё в конце Х1Х века.

В основу этого способа включены следующие положения:

  • подошва фундамента должна быть погружена в мерзлоту на глубину не меньше 1 м;
  • под фундамент делают выемку грунта с таким расчётом, чтобы затем образовавшиеся пазухи заполнить непучинистой почвой;
  • обратная засыпка по периметру основания строения в сечении представляет трапецию, обращённой меньшей вершиной вниз;
  • строительные объекты должны иметь подполье высотой не менее 0,7 – 1 м;
  • по периметру подполья в стенках устраивают технологические проёмы (продухи) для постоянного проветривания помещения.

Схема устройства основания здания по первому принципу

Предназначение продухов заключается в том, что благодаря сквозным отверстиям, подполье постоянно проветривается. Воздушные потоки выносят наружу тёплый воздух и заносят воздушные массы с низкой температурой. Получается своеобразный холодильник, который не даёт проникнуть теплу от дома внутрь мёрзлого основания. Мёрзлый грунт сохраняет постоянную температуру и не теряет свою несущую способность.

В результате наблюдений на протяжении нескольких десятков лет, был сделан вывод о том, что граница вечной мерзлоты под зданием сдвигалась вверх. Это происходило вследствие отсутствия воздействия солнечной радиации, жизнедеятельности деятельного слоя (Д.С). На рисунке показано, как изменяется граница М.М:

Изменение границы кровли М.М под зданием

Устойчивость сооружения, спроектированного по 1-му принципу, определяет по формуле:

KcQ + K1 (N + q) >K2TF

Q – сила, противостоящая выпучиванию грунта;

N – полная нагрузка от веса строения;

T – степень смерзания боковой грани фундамента с грунтом;

q – нагрузка от здания, направленная на уступы грунта;

Kc – к-нт однородности;

K1 – к-нт перегрузки (постоянная величина равная 0,9);

K2 – к-нт перегрузки от сил пучения (постоянная величина равная 1,1);

F – касательная сила пучения.

Второй принцип

Данный метод проектирования оснований зданий на ВГ допускает некоторое оттаивание почвы непосредственно под строением. Для этого применяют два способа:

  • конструктивный;
  • предпостроечный.

Конструктивный

Суть метода заключается в расчёте опорных конструкций зданий и сооружений с большим запасом прочности. Проект допускает неравномерную осадку сооружения в течение долгих лет эксплуатации.

Метод используют на участках с температурой массива ВГ около 0оС не более. Под этот вид проектирования подходят участки с гравийной, щебёночной и песчаной почвой. Построенные дома своим тепловым воздействием способствуют образованию под ними чаши оттаивания. Формироваться такая чаша может в течение нескольких десятков лет.

Возможные деформации строения из-за образования чаши оттаивания

Такое явление создаёт условия неравномерной осадки, а это в свою очередь может угрожать целостности конструкций дома. Чтобы этого не происходило, проектные организации при расчётах фундаментов закладывают определённый запас прочности.

Предпостроечный

Применение данного метода проектирования обусловлено рядом причин:

  1. Многолетний мёрзлый грунт состоит из неоднородных пород с разными показателями сжатия, как в мёрзлом, так и в талом состоянии.
  2. Основание сооружения по всей площади подвергается неравномерному прогреву (наличие котельной и прочее).

Ни в коем случае нельзя совмещать эти два метода для разных частей единого комплекса сооружений. Более поздняя пристройка к основному зданию, построенная на ином принципе проектирования, может вызвать разрушения несущих конструкций всего комплекса.

Противостоять неравномерной осадке зданий можно только одним путём. Нужно проектировать несущие конструкции с достаточным запасом прочности. Для этого устанавливают дополнительные пояса жёсткости из металлопроката высокого профиля.

Район вечной мерзлоты

Свайные фундаменты на вечномёрзлых грунтах

В районах вечной мерзлоты для устройства фундаментных оснований применяют сваи. Опорные конструкции такого типа бывают различными, как по конструктивным особенностям, так и по размерам.

Особенности свайных конструкций

Для возведения свайных фундаментов в зоне вечной мерзлоты используют деревянные, металлические и железобетонные сваи. Опоры различают по способу передачи нагрузки от здания на грунт. Это висячие сваи и сваи-стойки. Сваи для установки в вечномёрзлых грунтах применяют длиной от 6 до 15 м.

На участке с твёрдыми мёрзлыми почвами со средней годовой температурой не выше – 3о С устанавливают железобетонные сваи с величиной нормативной нагрузки в пределах 10 до 160 тн. В зонах с риском морозного пучения опоры оснащаются дополнительным армированием. В пластичных мёрзлых грунтах используют буро забивные конструкции.

Для одиноко стоящих сооружений свайное поле возводят из металлических свай. Опоры покрывают специальным антикоррозионным покрытием. Это позволяет защитить конструкции от агрессивного воздействия надмёрзлых грунтовых вод.

Поперечные сечения железобетонных опор имеют прямоугольные, квадратные и восьмигранные формы. Нижние концы делают заострёнными и тупыми.

Восьмигранные круглые опоры монолитного сечения наиболее приемлемы для их использования в надмёрзлых грунтах. Благодаря восьмигранной форме сечения, появляется возможность добиться бурения скважин оптимального радиуса. В результате плотного прилегания вдоль вертикальной поверхности опоры к грунту существенно повышается их несущая способность.

Сохранению мёрзлого состояния верхнего слоя почвы способствуют ростверки свайного поля, построенные из сборных конструкций. Уложенные железобетонные плиты перекрытия находятся на определённой высоте над грунтом. Проём между перекрытием и грунтовым основанием обеспечивает вентиляцию подполья, что препятствует таянию мерзлой поверхности почвы от теплового излучения строения.

При проектировании свайного основания, сохраняющего мёрзлое состояние грунта, производится бурение исследовательских (температурных) скважин для сбора данных наблюдения смерзания опор с грунтом.

Бурение скважин

Работы по бурению скважин составляют в среднем 75 – 80% от общих трудозатрат по устройству свай. Бурят скважины с помощью специальной техники. Буровые установки оснащены вращательным, ударно-вращательным, ударно-канатным и термомеханическим оборудованием. Наряду с этим, скважины проходят трубчатыми лидерами (буры специальной конструкции), опускаемые сваебойным оборудованием.

Бурильно-сваебойная установка БМ-811

Как правило, свайные поля на ВГ представляют большое количество опор. Поэтому для каждого строительного участка нужно особо тщательно подбирать буровые установки, соответствующие особенностям грунтового основания. Для отдалённых районов от коммуникаций технику выбирают, рассчитанную на длительную автономную эксплуатацию.

Установки ударно-канатного действия сложны в перевозке, ограничены в манёвренности. Поэтому используют крайне редко. Чаще всего скважины бурят установками ударно-вращательного и термомеханического принципа действия.

Лидерный способ проходки скважин заключается в том, что механизм погружается вниз по мере углубления отверстия в ВГ. Извлекают свае погружающую установку специальной лебёдкой.

Установка свай в ВГ

Метод установки опор определяют на основании физико-механических показателей ВГ, средней годовой температуры почвы, климатического района строительства, времени года и требований к степени точности погружения свай на ВГ.

Определяют среднюю годовую температуру ВГ на глубине от 10 — 15 м, где смена сезонов практически не вызывает изменения уровня средней температуры почвы. Учитывая этот показатель, мёрзлые грунты делят на низкотемпературные (от –1,5оС) и высокотемпературные (0оС, не ниже – 1,5оС) слои почвы. На основании этого выбирают определённый метод установки свай.

Мощность свайных оснований в низкотемпературных многолетних ВГ существенно больше, чем несущая способность опор, установленных в среде высокотемпературных слоёв почвы. К тому же временной промежутокмежду началом вмерзания и достижением максимальной величины несущей способности существенно сокращается.

Возведение оснований зданий на высокотемпературных пластично мёрзлых основаниях требуют соблюдать особые меры безопасности. Перед началом строительства следует проводить мероприятия по понижению температуры грунтового основания. При прохождении шурфов большого диаметра в почву специально понижают температуру для того, чтобы обеспечить полное вмерзание опор в грунт. Естественный процесс вмерзания может затянуться до 3 – 5 месяцев, что увеличивает срок окончания строительства объекта.

В справочной литературе можно найти графики среднемесячных температур взонах с разными характеристиками ВГ. Согласно этому графику определяют способ установки опор.

Заливка установленных свай

Сваи опускают в отверстия, которые в плане на 2,5 см больше радиуса поперечного сечения опоры. Затем заливают пазухи жидким грунтом. Технология заливки производится в следующем порядке:

  1. Бурят отверстия в местах установки свай с температурой грунта в диапазоне от 0оС до – 5оС. В случае превышения этой нормы, работы сопровождают принудительным охлаждением почвы.
  2. Заливают раствор в отверстия с положительной температурой воздуха. Если стоит морозная погода, грунтовый раствор подогревают от + 20оС до + 40оС.
  3. Сразу после заделки скважин раствором, в них опускают опоры.
  4. Установленные сваи подгоняют под проектное положение по высоте.

Скважины заливают жидким раствором из глины и песка. Смесь готовят из части глины и 8 – 10 частей песка. Уровень влажности заливки должен быть в пределах 30 – 35%. Осадка конуса должна составлять 12 – 16 см.

Скважину сверлят глубиной равной длине подземной части опоры или несколько больше. Недостающий объём обратной засыпки пополняют песком, щебнем либо другим мало сжимаемым сыпучим материалом.

При сооружении свайного основания стремятся добиться прочного смерзания опор с почвой, равной по степени смерзания опор с заливкой. Если этого не будет происходить, сформируется слабый слой грунтового раствора, который понизитпоказатель несущей способности опор.

При готовке заливки используют буровой шлам. Его достают из скважин в тёплый сезон года с помощью ударно-канатного оборудования. В случае преобладания песка в шламе в раствор включают глину.

На низкотемпературных участках установку свай осуществляют одновременно с прогревом мёрзлой почвы. Работы такого рода производят в течение всего года. На участках с температурой почвы около – 1оС осуществлять установку свай нужно с первых чисел января до окончания сентября.

Там где температура выше – 1,5оС, работы с октября по декабрь проводить не рекомендуют, потому что процесс вмерзания может затянуться.

Чтобы облегчить прохождения бура, используют горячую воду или пар. Также применяют открытые и закрытые обогреватели.

Закрытая система обогревателя обеспечивает проникновение теплоносителя в просверленные отверстия диаметром не более 150 мм. Закрытые обогреватели заставляют теплоноситель вращаться по замкнутому кругу.

В пластинчатых слоях ВГ нагревающие агрегаты вдавливают в ВГ на глубину от 5 до 8 м. Установленная в обогревателе паровая игла вдавливается в почву под давлением собственного веса. Погружать иглу в песчаный грунт приходится с применением физической силы рабочих. Проникающий пар размораживает мёрзлую почву и одновременно с этим происходит перемешивание грунта.

Нагретый до 90оС конец иглы смывает разогретую почву, тем самым вызывает интенсивное размораживание почвы. Центр размораживания никак не влияет на температурные изменения вокруг.

Установка свай в оттаявших грунтах обходится в 2 раза дешевле, чем погружение опор в заранее пробуренные скважины.

Одним из недостатков погружения опор в оттаявшую почву является то, что опоры вмерзают по-разному и очень медленно. В справочной информации приводятся таблицы, содержащие приближённое время вмерзания опоры. Благодаря смерзанию сваи с грунтовой заливкой удаётся повысить несущую способность опор на 25 — 30%.

Температурные нормы грунтов для бурозабивных свай

1 Пылеватый песок От 0ºС до – 3ºС
2 Супесь От 0ºС до – 8ºС
3 Суглинок От 0ºС до – 1ºС
4 Глина От – 1ºС до – 2ºС

Особенность возведения свайных оснований на ВГ нуждается в постоянном осуществлении контроля проектной организации всех стадий производства работ с обязательным составлением промежуточных актов приемки работ.

Винтовые сваи на вечномёрзлых грунтах

Особо следует обратить внимание на устройство фундаментных оснований на винтовых сваях в условиях вечной мерзлоты. Винтовые опоры давно завоевали популярность в сфере устройства фундаментов для зданий и сооружений в тех местах, где возведение опорных конструкций из других материалов проблематично.

Установка винтовых опор соответствует первому методу проектирования оснований зданий. Сооружения и дома, построенные на винтовых сваях, не соприкасаются с грунтом и поэтому не оказывают теплового воздействия на вечную мерзлоту.

Расчёт свайного основания на винтовых опорах в условиях многолетней мерзлоты практически ничем не отличается от расчёта несущей способности свай в районах средней полосы и южных районов страны. Единственным ограничением для использования винтовых свай являются скалистые грунты, почвы с крупнообломочными включениями.

При вхождении в почву винт сваи может разрушиться о каменистые фрагменты в составе грунта. Поэтому обязательно нужно проводить изыскательские работы, для подтверждения отсутствия таких негативных факторов.

Что такое винтовая опора

Винтовая свая представляет собой цельносварную металлическую трубу с винтовыми лопастями на нижнем её конце. Наконечник сваи для ВГ в корне отличается от обычных винтовых опор. Конец сваи имеет зубчатую коронку, что обеспечивает надёжное прохождение слоёв льда и мёрзлой почвы. Длину сваи определяют из расчёта вхождения конца опоры в однородный по составу грунт на глубину не менее 300мм.

Наконечники винтовых свай для ВГ

Установка винтовых свай

Ввиду особых условий, устанавливают винтовые конструкции только механизированным способом. Механизированная установка представляет собой самоходную платформу с подающей стрелой. Стрела оснащена вращающимся силовым механизмом, в котором закрепляют оголовок винтовой сваи. Под воздействием сил вращения опора ввинчивается в мёрзлый грунт, как штопор в пробку.

Установка винтовых свай механизированным способом

Как видно на снимке, сваи устанавливают на расстоянии друг от друга не более 3 м. Верхние части установленных опор нивелируют под одну отметку. Высоту наземной части свай рассчитывают таким образом, чтобы подполье дома достаточно интенсивно проветривалось. Движение воздушных масс под зданием не даёт проникать в толщу ВГ теплу от постройки.

Несущая способность винтовых опор

Строительная промышленность выпускает винтовые сваи длиной от 2,5 м и более. Размеры диаметров стволов: 58, 89 и 108 мм. По специальному заказу производитель изготовит металлические стойки индивидуальных размеров в соответствии с расчётными данными. В данной таблице указана несущая способность винтовых свай заводского изготовления:

1,6 2,5 3,5
1,4 2,2 3,2
0,3 0,5 0,7
2,8 4,4 6,4

Видео «Расчёт фундамента на винтовых сваях»:

Повышение несущей способности винтовых стоек

Повышают несущую способность металлических опор тем, что внутреннюю полость стволов заполняют бетонным раствором. После срезки верхних частей свай под одну отметку, внутрь стволов заливают жидкий бетон. Во время заливки трамбуют каждый слой раствора толщиной 500 – 700 мм. Для этого внутрь ствола опускают гильзу электрического вибратора.

Заполненная полость ствола опоры бетоном не нуждается в антикоррозионной защите. Внешнюю поверхность опор обрабатывают специальными антикоррозионными составами, предназначенными для эксплуатации в условиях вечной мерзлоты.

Столбчатый фундамент

Фундамент столбчатого строения должен оказывать давление на вечномёрзлый грунт равное силе пучения почвы. Выдержать такие условия на строительстве одноэтажных домов практически невозможно. Поэтому возведение таких зданий на столбчатом основании не осуществляют.

На столбчатых опорах строят дома высотой в 2 этажа и более. Основное условие строительства заключается в том, чтобы столбы своим основанием не достигали залегания пластов вечной мерзлоты.

В условиях многолетней мерзлоты на строительстве частных домов хозяева участка зачастую воздвигают столбчатые фундаменты своими руками.

Достоинства столбчатых опор

Взамен дорогостоящего ленточного фундамента возводят столбчатые опоры, которые обвязывают ростверковыми конструкциями.

Применение конструкций столбчатого типа обладает рядом достоинств:

  • невысокая стоимость;
  • экономия материальных затрат;
  • сжатые сроки строительства;
  • возможность широкого выбора материалов для изготовления столбчатых опор.

Разновидности столбчатых опор

Столбчатые опоры воздвигают различных видов таких, как:

  • кирпичные столбы;
  • монолитные бетонные столбы;
  • столбы из асбоцементных труб;
  • бутовые опоры;

Кирпичные столбы

Кирпичные столбики устанавливают крайне редко.В основном они служат в качестве опорных конструкций для строительства небольших лёгких приусадебных строений. Кирпич из обожжённой глины обладает высокой гигроскопичностью и под воздействием повышенной влажности подвержен эрозии.

Столбчатый фундамент из кирпича

Поверхности кирпичных столбиков нужно обязательно покрывать гидроизоляцией. Столбики оборачивают рубероидом на битумной мастике. Верхние поверхности тоже покрывают рубероидом или толем. Кирпичные столбы возводят на небольшой глубине выше уровня залегания промёрзлых слоёв почвы.

Сложенный столб шириной в 1,5 кирпича образует внутреннюю полость квадратного сечения. Полость заполняют бетонным раствором. Чтобы масса раствора не распёрла стенки столба, заполнение внутреннего объёма опоры производят послойно, перемежая слои раствора и шлама. Толщина каждого слоя должна быть около 300 мм. Слои обязательно подвергают трамбовке.

Для обеспечения связей опор с конструкцией ростверка внутрь столбов помещают арматурный каркас. Каркас делают из трёх продольных стержней периодического профиля. Стержни связывают проволокой с поперечными отрезками арматуры. Выпуски арматуры оставляют такой длины, чтобы обеспечить прочную связь с ростверком.

Кирпичные столбы такой конструкции обладают повышенной несущей способностью и могут служить в качестве фундамента даже для двухэтажных зданий.

Монолитные бетонные столбы

Вместо кирпичной кладки возводят столбы из монолитного бетона. В отличие от кирпичных столбиков возведение железобетонных опор связано с устройством опалубки. Для устройства фундаментного основания используют бетон марки не ниже М 300.

Железобетонные столбы обладают высокими показателями несущей способности.Они могут выдерживать довольно большой вес малоэтажного строения.

Как и кирпичные столбики, железобетонные столбы возводят на уширенной бетонной подготовке.

Работы по возведению монолитных опор производят в следующем порядке:

  1. Производят разметку строительного участка. Отмечают реперами центры опор.
  2. Выкапывают ямы проектной глубины. На дно насыпают песок и тщательно его трамбуют. На песчаную подушку укладывают бетон толщиной 150 — 200 мм.
  3. Внутри ям устанавливают опалубочные щиты с распорками. Опускают арматурные каркасы.
  4. Производят заливку опалубки бетонным раствором.
  5. Через 28 – 30 дней опалубку демонтируют. Поверхность столбов покрывают гидроизоляцией.

Столбы из асбоцементных труб

Столбчатый фундамент из асбоцементных труб в зонах вечной мерзлоты возводят при условии соблюдения достаточного просвета между низом строения и грунтовым основанием.

При проектировании здания используют первый принцип формирования фундаментного основания. Проём между домом и землёй обеспечивает поддержание температуры воздуха окружающей среды. Этим исключается тепловое воздействие строения на многолетнюю мерзлоту.

Стандартный диаметр труб для фундаментных столбов – 300 мм. Строительная промышленность выпускает асбестовые трубы длиной 6 м и 12 м. Чтобы получить опору нужной длины, её обрезают абразивным кругом. Наращивают трубу с помощью муфты (отрезка трубы большого диаметра).

Для формирования одной опоры нередко используют связку из нескольких труб.

Устанавливают столбчатый фундамент на ВГ следующим образом:

  1. В отмеченных местах бурят скважины. Диаметр скважин должен быть таким, чтобы трубы плотно входили в отверстия.
  2. Дно скважин засыпают щебнем слоем 300 мм.
  3. В отверстия опускают асбестоцементные трубы. Согласно расчётам несущей способности опор внутрь труб помещают арматурный каркас.
  4. Трубы заливают бетонным раствором, оставляя выпуски арматуры.
  5. Зазоры между стенкой трубы и отверстием заполняют трамбованным песком.

Бутовые опоры

Если рядом со строительным участком можно добыть бутовый камень, то фундамент возводят из бутовых столбов. В зоне вечной мерзлоты столбчатый фундамент делают мелко заглублённым. Столбы возводят из подогнанных камней по размеру и форме, которые скрепляют цементным раствором.

Наряду с вышеописанными видами столбчатых опор, опоры возводят из сборных железобетонных фундаментных блоков. Для частных домов основание из сборного железобетона экономически невыгодно. Возводят такие опоры на строительстве крупных промышленных и гражданских объектах.

Столбчатый фундамент для небольших частных домостроений на ВГ экономит немалые средства застройщиков, которые решили построить дом своими руками.

Ленточный мелкозаглубленный фундамент

На вечной мерзлоте допускается возведение мелкозаглублённых монолитных ленточных фундаментов. На таком основании строят небольшие одноэтажные постройки. Кирпичные дома в условиях мерзлоты строят на скальных грунтах.

Надёжность монолитного основания здания определяет долговечность и целостность несущих конструкций. Габариты монолитной ленты определяют расчётом на основе следующих факторов:

  • несущая способность верхнего слоя грунтового основания;
  • глубина залегания многолетней мерзлоты промерзания;
  • толщина деятельного слоя почвы, уровень грунтовых вод;
  • сезонные изменения свойств грунта;
  • план дома — расположение несущих стен, которые передают нагрузку от веса здания на фундамент;
  • расчёт удельной нагрузки на единицу площади строения;
  • наличие и доступность материальных ресурсов.

Обоснование возведения монолитной ленты

В условиях отдалённых северных районов страны могут возникать трудности, связанные с отсутствием логистики по доставке сборных железобетонных блоков на строительный участок, поэтому, чаще всего, ленточный фундамент возводят из монолитного железобетона.

Проектирование и расчёт монолитной ленты

При больших объёмах крупных объектов необходимо обращаться к специалистам-проектировщикам. На основе проекта составляется сметная документация и спецификация расходных материалов для возведения монолитного фундамента.

Из проектной документации можно определить, сколько нужно изготовить или заказать бетонного раствора, какой марки. Также производится подсчёт потребности в арматуре, гидроизоляции и прочих сопутствующих материалов.

Этапы работ

Возведение монолитного фундамента в условиях вечной мерзлоты разбивают на несколько этапов. Этапы работ выполняют в следующем порядке:

  • подготовительные;
  • земляные;
  • опалубочные;
  • армирование;
  • бетонирование;
  • уход за бетоном.

Подготовительные

Правильно выполненные подготовительные мероприятия, обеспечивают ритмичное строительство объекта. Мероприятия проводят в следующем порядке:

  1. Устраивают подъездной путь к строительной площадке. Дорога должна обеспечить беспрепятственный проезд автотранспорта при любой погоде;
  2. На место строительства завозят материалы (цемент, песок, арматуру, доски и брус), инструменты и бетономешалку. Делают необходимый запас воды.
  3. Готовят площадку для изготовления опалубочных щитов, устанавливают бетономешалку или ёмкость для замеса раствора вручную.
  4. Подводят электрический кабель с устройством электрощита.

Земляные

После окончания подготовительных работ приступают непосредственно к выполнению земляных работ. Снимают плодородный слой грунта. Выемку грунта производят до проектной отметки. Траншеи под ленту роют такой ширины, чтобыбыло удобно производить опалубочные работы.

Устройство подвального помещения увеличивает внешнее воздействие почвы на вертикальную поверхность фундаментного основания. Поэтому монолитную ленту делают шире с более мощным арматурным каркасом.Стенки траншей копают под углом для предотвращения осыпания грунта внутрь рвов.

Основание траншей трамбуют. Если нет возможности применить виброплиту, трамбуют дно рвов вручную колодой. Затем по всему дну траншей насыпают подушку из щебня и песка толщиной слоёв 100 – 150 мм.

Опалубочные

Подготовленные щиты укладывают в траншеи. Щиты изготавливают из досок, строительной фанеры. По возможности берут в аренду многоразовые опалубочные щиты. Важно, чтобы щиты не имели щелей и были надёжно закреплены упорами, распорками и стяжками.

Во избежание протечки жидкого раствора внутренние поверхности опалубки покрывают листами рубероида или полиэтиленовой плёнкой. После демонтажа покрытие оставляют на поверхности монолита в качестве гидроизоляции.

Стыки покрытия делают с напуском в 10 — 15 см. Лучше всего использовать строительную полиэтиленовую плёнку, сделанную из вторичного сырья. Материал толщиной 40 – 60 мкм обладает высокой прочностью.

Армирование

Арматурные каркасы изготавливают из стержней периодического профиля диаметром от 8 до 12 мм. Для поперечных связей применяют гладкие стержни 8 – 10 мм в диаметре.

Каркасы из арматуры скрепляют на строительной площадке вязальной проволокой или сваривают на специальном стенде. Также к арматуре приваривают закладные детали.

Каркасы укладывают в опалубку таким образом, чтобы металл был покрыт бетонным раствором толщиной 30 мм. Для этого ставят различные подкладки из дерева. Делают это с целью создания защитного слоя бетона, не допускающего коррозию металла.

Бетонирование

В опалубку фундаментов небольших зданий заливают бетон марок М 250 – М 300. Готовят бетонный раствор рядом с возводимым основанием здания вручную или с помощью бетономешалки. Если недалеко от строительства находится растворный узел, бетон нужной марки заказывают на предприятии. В назначенное время на площадку прибудет автомиксер.

Заливку опалубки нужно производить непрерывно. Прерывать процесс можно только на 2 – 3 часа. Иначе полученный монолитный фундамент потеряет нужную несущую способность. Во время заливки контролируют горизонтальность поверхности монолитной ленты.

Проектирование и расчёт фундаментов на вечномёрзлых грунтах требуют профессионального подхода, поэтому заниматься этим должны специализированные проектные организации.

Статьи по теме:

Существуют два принципа проектирования сооружений на вечномёрзлых грунтах. Первый принцип заключается в сохранении вечномёрзлого состояния грунтов.

Данный принцип или метод целесообразно применять в тех районах, где:

  • Многолетнемёрзлый грунт имеет значительную мощность;

  • Сооружения выделяют значительные количества тепла и не занимают больших площадей в плане.

Расчётно-теоретическое и конструктивное обоснование этого принципа было произведено в конце 20-х годов прошлого века. Однако по такому методу строили здания ещё раньше (Чита, Иркутск, Хабаровск). В настоящее же время этот метод является общепризнанным и универсальным, поскольку позволяет наилучшим образом использовать высокие строительные качества любых мёрзлых грунтов. По этому методу построено много промышленных сооружений и целые города (Норильск).

Сущность данного принципа заключается в том, что фундаменты здания прорезают деятельный слой и не менее метра заглубляются в слой многолетнемёрзлого грунта. С боковой поверхности (обратная засыпка) фундаменты засыпаются непучинистым грунтом, а между приподнятым над поверхностью грунта полом первого этажа (примерно на 1 м) и грунтом, в конструкции фундамента, устраиваются продухи (см. схему 22).

Расчетная схема устройства фундаментов на вечномёрзлых грунтах по первому принципу строительства.

Продухи представляют собой проёмы, расположенные по периметру здания, предназначенные для пропуска холодного воздуха, выносящего тепловые потоки здания от помещений первого этажа.

В результате наблюдений за зданиями, фундаменты которых были возведены по принципу сохранения вечной мерзлоты, было установлено, что граница многолетней мерзлоты под зданиями со временем поднимается (отсутствие растительности, солнечной радиации). Это способствует ещё большей устойчивости зданий.

Расчетная схема наиболее вероятного изменения кровли вечной мерзлоты под эксплуатируемым зданием, построенном по первому принципу — сохранения мерзлоты.

Стремясь как можно больше снизить влияния теплового выделения здания на мёрзлые грунты, прибегают к проектированию зданий на столбчатых и свайных фундаментах. Наиболее универсальными являются железобетонные сваи; металлические сваи применяются только при соответствующем обосновании. Для малоответственных сооружений возможно применение деревянных свай. Применение ленточных фундаментов и в виде сплошных плит допускается для малоэтажных зданий и сооружений на подсыпках из дренирующего материала (песка, гравия, щебня и т.п.).

Устойчивость фундаментов запроектированных на вечномерзлых грунтах по первому принципу строительства, в соответствии с примятыми обозначениями на схеме, определяется из условия:

  • где Q – нормативная сила, удерживающая фундамент от выпучивания, вследствие смерзания его боковой поверхности с многолетнемёрзлым грунтом;

  • N – нормативная нагрузка от веса сооружения;

  • τсм – касательные силы пучения — нормативная величина сил смерзания грунта к боковой поверхности фундамента, кг /см2;

  • q – нормативная нагрузка от веса сооружения и грунта на его уступах;

  • γс – коэффициент однородности и условий работы.

  • γ1 – коэффициент перегрузки постоянной нагрузки равный 0,9;

  • γ2 – коэффициент перегрузки сил пучения равный 1,1.

Расчетная схема отдельностоящих и свайных фундаментов при расчёте их на устойчивость в вечномёрзлом слое грунта.

В правой части приведённого неравенства представлены силы, стремящиеся деформировать сооружение вверх, нарушая его устойчивость. Для нейтрализации данных воздействий рекомендуется использовать специальные мероприятия по их уменьшению (создание не пучинистых обсыпок, обмазок и т.п.).

При строительстве на засоленных грунтах следует применять фундаменты, обеспечивающие наиболее полное использование сопротивление мерзлых грунтов нормальному давлению (плитные, столбчатые и ленточные фундаменты, сваи с уширенной пятой и др.). При буроопускном способе погружения свай скважины должны быть диаметром не менее чем на 10 см большим поперечного сечения сваи и заполняться, как правило, известково-песчаным или цементно-песчаным раствором. Под нижним концом сваи следует устраивать уплотненную подушку из щебня.

Несущую способность оснований столбчатых и свайных фундаментов на засоленных многолетнемерзлых грунтах при использовании их по принципу I следует определять согласно указаниям СНиП 2.03.11. При этом расчетные значения сопротивления грунтов нормальному давлению и сдвигу по поверхности смерзания R и Raf надлежит принимать, как правило, по опытным данным. Для сооружений III уровня ответственности, а также при привязке типовых проектов к местным условиям, значения R и Raf допускается принимать по таблицам нормативных документов.

При расчетах несущей способности оснований буроопускных свай засоленность грунтового раствора и сопротивления сдвигу по поверхности сваи Raf следует принимать по засоленности и значениям Raf прилегающего природного грунта. Если несущая способность буроопускных свай определена по результатам полевых испытаний, то расчетную несущую способность таких свай следует принимать с понижающим коэффициентом, учитывающим изменение температурного состояния и степени засоленности грунтового раствора в процессе эксплуатации сооружения, устанавливаемым по опыту местного строительства или по данным специальных исследований.

Для опускных и буроопускных свай расчетные значения Raf допускается принимать при средневзвешенном значении засоленности грунтов по длине сваи.

Расчет оснований и фундаментов на засоленных многолетнемерзлых грунтах по деформациям следует производить как на пластичномерзлых грунтах.

При расчетных деформациях оснований, сложенных мерзлыми засоленными грунтами, больше предельных или недостаточной несущей способности основания следует предусматривать частичную или полную замену засоленных грунтов на незасоленные, дополнительное понижение температуры грунтов, прорезку засоленных слоев грунта глубокими фундаментами, устройство фундаментов на подсыпках, распределяющих нагрузки на мерзлые грунты оснований, и другие мероприятия, а в необходимых случаях осуществлять строительство с использованием засоленных многолетнемерзлых грунтов в качестве оснований по принципу II.

Особенности проектирования оснований и фундаментов на засоленных многолетнемерзлых грунтах

Для проектирования фундаментов на засоленных многолетнемерзлых грунтах материалы изысканий должны содержать данные об условиях залегания засоленных грунтов, степени их засоленности, а также о химическом составе водно-растворимых солей.

Засоленные многолетнемерзлые грунты могут использоваться в качестве основания сооружений как по принципу I, так и по принципу II. При этом должно учитываться повышенное коррозийное воздействие засоленных грунтов на материал фундаментов.

Пылеватые грунты морского побережья Севера с преобладанием солей натрий-калиевого состава должны относиться к засоленным при содержании в них растворимых солей от 0,05 % и выше.

Основания и фундаменты на засоленных многолетнемерзлых грунтах при использовании таких грунтов в качестве основания по принципу I следует проектировать с учетом следующих особенностей:

а) температура начала замерзания засоленных грунтов Tbf ниже температуры замерзания аналогичных видов незасоленных грунтов и ее следует устанавливать опытным путем;

б) переход засоленных грунтов из пластично-мерзлого в твердомерзлое состояние происходит при более низких температурах, чем аналогичных незасоленных грунтов, и должен приниматься по данным опытного определения коэффициента их сжимаемости df;

в) засоленные мерзлые грунты отличаются пониженной прочностью и малыми значениями сопротивлений сдвигу по поверхности смерзания с фундаментом;

г) на участках с засоленными грунтами может быть несколько засоленных горизонтов с разной степенью засоленности, а также могут встречаться отдельные слои или линзы насыщенных сильно минерализованными водами грунтов, находящихся в немерзлом состоянии при отрицательной температуре (криопеги), вскрытие которых скважинами при погружении свай приводит к повышенному засолению грунтов по всей длине сваи.

Первый принцип проектирования фундаментов на вечномёрзлых грунтах

Существуют два принципа проектирования сооружений на вечномёрзлых грунтах. Первый принцип заключается в сохранении вечномёрзлого состояния грунтов.

Данный принцип или метод целесообразно применять в тех районах, где:

  • Многолетнемёрзлый грунт имеет значительную мощность;
  • Сооружения выделяют значительные количества тепла и не занимают больших площадей в плане.

Расчётно-теоретическое и конструктивное обоснование этого принципа было произведено в конце 20-х годов прошлого века. Однако по такому методу строили здания ещё раньше (Чита, Иркутск, Хабаровск). В настоящее же время этот метод является общепризнанным и универсальным, поскольку позволяет наилучшим образом использовать высокие строительные качества любых мёрзлых грунтов. По этому методу построено много промышленных сооружений и целые города (Норильск).

Сущность данного принципа заключается в том, что фундаменты здания прорезают деятельный слой и не менее метра заглубляются в слой многолетнемёрзлого грунта. С боковой поверхности (обратная засыпка) фундаменты засыпаются непучинистым грунтом, а между приподнятым над поверхностью грунта полом первого этажа (примерно на 1 м) и грунтом, в конструкции фундамента, устраиваются продухи (см. схему 22).

Расчетная схема устройства фундаментов на вечномёрзлых грунтах по первому принципу строительства.

Продухи представляют собой проёмы, расположенные по периметру здания, предназначенные для пропуска холодного воздуха, выносящего тепловые потоки здания от помещений первого этажа.

В результате наблюдений за зданиями, фундаменты которых были возведены по принципу сохранения вечной мерзлоты, было установлено, что граница многолетней мерзлоты под зданиями со временем поднимается (отсутствие растительности, солнечной радиации). Это способствует ещё большей устойчивости зданий.

Расчетная схема наиболее вероятного изменения кровли вечной мерзлоты под эксплуатируемым зданием, построенном по первому принципу — сохранения мерзлоты.

Стремясь как можно больше снизить влияния теплового выделения здания на мёрзлые грунты, прибегают к проектированию зданий на столбчатых и свайных фундаментах.
Наиболее универсальными являются железобетонные сваи; металлические сваи применяются только при соответствующем обосновании. Для малоответственных сооружений возможно применение деревянных свай. Применение ленточных фундаментов и в виде сплошных плит допускается для малоэтажных зданий и сооружений на подсыпках из дренирующего материала (песка, гравия, щебня и т.п.).

Устойчивость фундаментов запроектированных на вечномерзлых грунтах по первому принципу строительства, в соответствии с примятыми обозначениями на схеме, определяется из условия:

  • где Q – нормативная сила, удерживающая фундамент от выпучивания, вследствие смерзания его боковой поверхности с многолетнемёрзлым грунтом;
  • N – нормативная нагрузка от веса сооружения;
  • τсм – касательные силы пучения — нормативная величина сил смерзания грунта к боковой поверхности фундамента, кг /см2;
  • q – нормативная нагрузка от веса сооружения и грунта на его уступах;
  • γс – коэффициент однородности и условий работы.
  • γ1 – коэффициент перегрузки постоянной нагрузки равный 0,9;
  • γ2 – коэффициент перегрузки сил пучения равный 1,1.

Расчетная схема отдельностоящих и свайных фундаментов при расчёте их на устойчивость в вечномёрзлом слое грунта.

В правой части приведённого неравенства представлены силы, стремящиеся деформировать сооружение вверх, нарушая его устойчивость. Для нейтрализации данных воздействий рекомендуется использовать специальные мероприятия по их уменьшению (создание не пучинистых обсыпок, обмазок и т.п.).

При строительстве на засоленных грунтах следует применять фундаменты, обеспечивающие наиболее полное использование сопротивление мерзлых грунтов нормальному давлению (плитные, столбчатые и ленточные фундаменты, сваи с уширенной пятой и др.). При буроопускном способе погружения свай скважины должны быть диаметром не менее чем на 10 см большим поперечного сечения сваи и заполняться, как правило, известково-песчаным или цементно-песчаным раствором. Под нижним концом сваи следует устраивать уплотненную подушку из щебня.

Несущую способность оснований столбчатых и свайных фундаментов на засоленных многолетнемерзлых грунтах при использовании их по принципу I следует определять согласно указаниям СНиП 2.03.11. При этом расчетные значения сопротивления грунтов нормальному давлению и сдвигу по поверхности смерзания R и Raf надлежит принимать, как правило, по опытным данным. Для сооружений III уровня ответственности, а также при привязке типовых проектов к местным условиям, значения R и Raf допускается принимать по таблицам нормативных документов.

При расчетах несущей способности оснований буроопускных свай засоленность грунтового раствора и сопротивления сдвигу по поверхности сваи Raf следует принимать по засоленности и значениям Raf прилегающего природного грунта. Если несущая способность буроопускных свай определена по результатам полевых испытаний, то расчетную несущую способность таких свай следует принимать с понижающим коэффициентом, учитывающим изменение температурного состояния и степени засоленности грунтового раствора в процессе эксплуатации сооружения, устанавливаемым по опыту местного строительства или по данным специальных исследований.

Для опускных и буроопускных свай расчетные значения Raf допускается принимать при средневзвешенном значении засоленности грунтов по длине сваи.

Расчет оснований и фундаментов на засоленных многолетнемерзлых грунтах по деформациям следует производить как на пластичномерзлых грунтах.

При расчетных деформациях оснований, сложенных мерзлыми засоленными грунтами, больше предельных или недостаточной несущей способности основания следует предусматривать частичную или полную замену засоленных грунтов на незасоленные, дополнительное понижение температуры грунтов, прорезку засоленных слоев грунта глубокими фундаментами, устройство фундаментов на подсыпках, распределяющих нагрузки на мерзлые грунты оснований, и другие мероприятия, а в необходимых случаях осуществлять строительство с использованием засоленных многолетнемерзлых грунтов в качестве оснований по принципу II.

Основания и фундаменты на засоленных многолетнемерзлых грунтах при использовании их в качестве оснований сооружений по принципу II следует проектировать в соответствии с и требованиями СП 22.13330.2011, СП 24.13330.2011 и СНиП 2.03.11.

Особенности проектирования оснований и фундаментов на заторфованных многолетнемерзлых грунтах

Основания и фундаменты на заторфованных многолетнемерзлых грунтах и торфах, а также на грунтах с примесью органических остатков надлежит проектировать в соответствии с указаниями раздел 7 и требованиями СП 22.13330.2011 с учетом их большой сжимаемости под нагрузкой, проявлением пластических деформаций в широком диапазоне отрицательных температур, пониженной прочностью смерзания с фундаментами, низкой теплопроводностью и замедленной стабилизацией осадок при оттаивании.

При использовании заторфованных грунтов в качестве оснований по принципу I следует применять плитные, столбчатые и свайные фундаменты, а также малозаглубленные и поверхностные фундаменты на подсыпках. Сваи следует погружать, как правило, буроопускным способом в скважины диаметром на 10 см большим поперечного сечения сваи с заполнением пазух цементно-песчаным раствором или другим раствором по проекту; опирание свай на прослои торфа не допускается.

Под подошвой плитных и столбчатых фундаментов следует устраивать песчаную подушку толщиной не менее: для плитных фундаментов — 0,3 м, для столбчатых — половины ширины подошвы фундамента. При небольшой толщине покровного торфяного слоя следует предусматривать его удаление.

Расчет несущей способности оснований столбчатых и свайных фундаментов на заторфованных грунтах при их использовании по принципу I производится согласно указаниям пп. 7.2.2–7.2.3. При этом расчетные значения сопротивления этих грунтов нормальному давлению и сдвигу по поверхности смерзания с фундаментом R и Raf следует принимать, как правило, по опытным данным. Для сооружений III уровня ответственности, а также для предварительных расчетов оснований значения R и Raf допускается принимать по таблицам нормативных документов.

Основания фундаментов, возводимых на подсыпках, следует рассчитывать по несущей способности грунтов подсыпки с проверкой силы предельного сопротивления основания на уровне поверхности природных заторфованных грунтов с учетом расчетной глубины сезонного оттаивания. Если расчетная глубина оттаивания больше толщины подсыпки, то основание должно быть также рассчитано по деформациям.

Расчет оснований, сложенных биогенными грунтами, по деформациям надлежит производить: столбчатых – по указаниям пп. 7.2.15–7.2.16; свайных – по результатам полевых испытаний свай статической вдавливающей нагрузкой.

Основания и фундаменты на заторфованных грунтах при использовании таких грунтов в качестве оснований по принципу II необходимо проектировать в соответствии с требованиями СП 22.13330.2011 и СП 24.13330.2011 .

Особенности проектирования оснований и фундаментов на многолетнемерзлых грунтах в сейсмических районах

Основания и фундаменты сооружений, возводимых на многолетнемерзлых грунтах на площадках с расчетной сейсмичностью 7, 8 и 9 баллов следует проектировать с учетом требований СНиП II-7, СП 22.13330.2011, СП 24.13330.2011, СНиП 2.05.03 и требований настоящих норм.

Для сейсмических районов с расчетной сейсмичностью 7, 8 и 9 баллов следует предусматривать использование многолетнемерзлых грунтов в качестве основания, как правило, по принципу I. При невозможности использования грунтов в качестве основания по принципу I допускается использование их по принципу II при условии опирания фундаментов на скальные или другие малосжимаемые при оттаивании грунты или на предварительно оттаянные и уплотненные грунты.

В сейсмических районах следует применять те же виды свай, что и в несейсмических районах, кроме свай без поперечного армирования. Глубина погружения свай в грунт (исключая сваи-стойки) должна быть не менее 4 м.

Расчет оснований и фундаментов по несущей способности на вертикальную нагрузку с учетом сейсмических воздействий следует производить, определяя при этом силу предельного сопротивления основания, а коэффициент надежности gn принимать: 

  • при использовании многолетнемерзлых грунтов в качестве основания по принципу I.
  • при использовании многолетнемерзлых грунтов в качестве основания по принципу II – для фундаментов на естественном основании – gn = 1,5, а для свайных – по требованиям СП 24.13330.2011.

Несущую способность вертикально нагруженной висячей сваи Fu, а также столбчатого фундамента при использовании многолетнемерзлых грунтов в качестве основания по принципу I, с учетом сейсмических воздействий следует определять согласно указаниям п. 7.2.2; при этом расчетное сопротивление грунта или грунтового раствора сдвигу по поверхности смерзания с фундаментом Raf и расчетное давление мерзлого грунта под нижним концом сваи или подошвой столбчатого фундамента R надлежит умножать на коэффициент условий работы основания geq, принимаемый по табл. 9.

Таблица 9

Расчетная сейсмичность  Коэффициент условий работы geq для грунтов
в баллах  твердомерзлых  пластичномерзлых  сыпучемерзлых 
78 1,01,0 0,90,8 0,950,9

При опирании свай-стоек на скальные или несжимаемые крупноблочные грунты значение коэффициента ged принимается равным 1,0.

Для свай в пластичномерзлых грунтах значение Raf следует принимать равным нулю в пределах от верхней границы многолетнемерзлых грунтов до расчетной глубины hd, м, определяемой по формуле

где ae – коэффициент деформации системы «свая-грунт», определяемый по результатам испытаний.

Расчет свай по прочности материала на совместное действие расчетных усилий (продольной силы, изгибающего момента и поперечной силы) при использовании многолетнемерзлых оснований по принципу I следует производить в зависимости от расчетных значений сейсмических нагрузок в соответствии с требованиями СП 24.13330.2011 с учетом указаний п. 7.2.13. При этом для свай в пластично-мерзлых грунтах коэффициент деформации системы «свая-грунт» ae
м–1, следует определять по результатам испытаний свай статической горизонтальной нагрузкой по формуле

где Fh — горизонтальная нагрузка, кН, принимаемая равной 0,7Fh,u;
здесь Fh,u — горизонтальная предельная нагрузка, кН, в уровне поверхности грунта, при которой перемещение испытуемой сваи начинает возрастать без увеличения нагрузки;  
u0 — горизонтальное перемещение сваи в уровне поверхности грунта, м, определяемое по графику зависимости горизонтальных перемещений от нагрузки при условной стабилизации перемещений, если расчет ведется на статические нагрузки, и без условной стабилизации перемещений, если расчет ведется на сейсмические воздействия;  
Eb — модуль упругости материала свай, кПа;   
I — момент инерции сечения сваи, м4.

Проверку основания столбчатого фундамента на горизонтальную и внецентренно сжимающую нагрузки с учетом сейсмических воздействий при использовании многолетнемерзлых грунтов в качестве основания по принципу I следует производить на опрокидывание и сдвиг по подошве фундамента.

При действии сейсмических нагрузок, создающих моменты сил в обоих направлениях подошвы фундамента, расчет основания надлежит производить раздельно на действие сил и моментов в каждом направлении независимо друг от друга.

Расчет оснований и фундаментов с учетом сейсмических воздействий при использовании многолетнемерзлых грунтов по принципу II необходимо производить в соответствии с требованиями СП 22.13330.2011, СП 24.13330.2011 и указаниями пп. 7.3.1-7.3.15 СНиП 2.02.04-88 (актуализированная редакция) по расчету оттаивающих оснований. При этом отрицательные (негативные) силы трения, вызванные осадкой оттаивающих грунтов, в расчетах оснований на сейсмические воздействия не учитываются, если оттаивающее основание сложено песчаными и крупнообломочными грунтами, осадки которых завершаются в процессе их оттаивания.

Особенности проектирования оснований и фундаментов мостов и труб под насыпями

Основания и фундаменты мостов и труб под насыпями (труб), возводимых на территориях распространения многолетнемерзлых грунтов, следует проектировать с учетом дополнительных требований, содержащихся в настоящем разделе и СП 32-101.

В проектах фундаментов мостов и труб необходимо дополнительно (по сравнению с фундаментами зданий) учитывать влияние следующих факторов:

  • воздействие на сооружения, кроме вертикальных, значительных горизонтальных сил от временных подвижных нагрузок, давлений грунта и льда;
  • уменьшение несущей способности оснований вследствие размывов дна водотока или отепляющего воздействия воды на многолетнемерзлые грунты;
  • возрастание сил морозного пучения грунтов из-за повышенной их влажности вблизи водотоков и уменьшение этих сил при увеличении толщины снегового покрова;
  • нарушение устойчивости береговых склонов вследствие проявления оползневых процессов;
  • появление наледи в пределах сооружений.

Нагрузки и воздействия на фундаменты мостов и труб следует принимать в соответствии с требованиями СНиП 2.05.03.

В основаниях фундаментов мостов многолетнемерзлые грунты следует использовать преимущественно по принципу I, если на уровне низа свайных элементов (свай-столбов, свай-оболочек) в течение всего периода эксплуатации сооружений грунты будут находиться в твердомерзлом состоянии. Допускается использовать по принципу I пластичномерзлые грунты, включая засоленные, при условии, что в течение всего периода эксплуатации сооружений будет обеспечена их отрицательная температура, требуемая по расчету несущей способности оснований.

Возможность использования многолетнемерзлых грунтов в качестве оснований по принципу II для фундаментов мелкого заложения и свайных должна определяться исходя из общих требований пп. 6.1.3, 6.1.4 и 6.1.6 СНиП 2.02.04-88 (актуализированная редакция).

Прогноз изменений температурного режима многолетнемерзлых грунтов, используемых в качестве оснований по принципу I, осуществление в случае необходимости специальных мероприятий по обеспечению мерзлого состояния грунтов и контроль их температуры в течение всего периода эксплуатации сооружений следует выполнять численными методами и (или) по указаниям ведомственных строительных норм.

СОУ и теплозащитные экраны необходимо применять в случаях практической невозможности или недостаточной эффективности других решений для поддержания на весь период эксплуатации сооружений температуры грунтов, требуемой по расчету несущей способности оснований. Число СОУ следует принимать по расчету с повышающим коэффициентом 1,4.

Фундаменты мостов при использовании многолетнемерзлых грунтов в качестве оснований по принципам I и II следует проектировать, как правило, свайными с ростверком, расположенным над поверхностью грунта или воды. При этом надлежит предусматривать меры, исключающие возможность повреждения свай ледоходом или другими неблагоприятными воздействиями.

Фундаменты мелкого заложения (на естественном основании) допускается проектировать для мостов, возводимых, как правило, на используемых по принципу II многолетнемерзлых грунтах, если после полного оттаивания таких грунтов осадки и крены опор не будут превышать предельно допустимых значений по условиям нормальной эксплуатации сооружений.

Для труб следует предусматривать преимущественно фундаменты мелкого заложения независимо от вида грунтов и принципа их использования в качестве основания при условии, что суммарное значение осадки используемых по принципу II грунтов может быть компенсировано строительным подъемом лотка труб.

Многолетнемерзлые грунты в основании фундаментов малого моста или трубы и прилегающих участков насыпи, как правило, следует использовать по одному принципу, не допуская опирания их частично на мерзлые и частично на немерзлые или оттаивающие грунты.

В грунтах, подверженных морозному пучению, независимо от принятого принципа их использования в качестве основания подошву фундаментов мелкого заложения для мостов и труб следует заглублять не менее чем на величину, указанную в табл.5.3 СП 22.13330.2011 при расположении уровня подземных вод на глубине dw ≤ df  + 2 м, а подошву, расположенного в грунте ростверка свайных фундаментов – не менее чем на 0,25 м ниже расчетной глубины сезонного промерзания–оттаивания грунтов.

Если по требованиям глубина заложения фундаментов должна быть не менее расчетной глубины промерзания грунта, все фундаменты, за исключением фундаментов или грунтовых подушек для средних звеньев одноочковых труб отверстием до 2 м, следует заглублять не менее чем на 0,25 м ниже расчетной глубины промерзания грунта. При этом за расчетную глубину промерзания принимается ее нормативное значение.

Фундаменты или грунтовые подушки средних звеньев одноочковых труб отверстием до 2 м допускается закладывать без учета глубины промерзания грунта.

В случаях, когда глубина заложения фундаментов не зависит от расчетной глубины промерзания грунта, соответствующие грунты, указанные в табл.5.3 СП 22.13330.2011, должны залегать не менее чем на 1 м ниже нормативной глубины промерзания грунта.

Подошву высокого ростверка свайных фундаментов мостов следует располагать с зазором от поверхности грунта не менее 0,5 м в устоях и 1 м – в промежуточных опорах.

Глубину заложения фундаментов и грунтовых подушек под средние звенья труб диаметром 2 м и более следует назначать с учетом уменьшения глубины промерзания грунта в направлении к оси насыпи.

В неподверженных морозному пучению грунтах подошву ростверка свайных фундаментов или фундаментов мелкого заложения мостов и труб допускается располагать в пределах слоя сезонного промерзания–оттаивания при условии, что нижняя граница толщи таких грунтов залегает не менее чем на 1 м ниже расчетной глубины промерзания и, кроме того, в пределах зоны промерзания отсутствует вероятность образования линзового льда, в том числе и от напорных подземных вод.

Подошву фундаментов мелкого заложения и нижние концы свай не допускается опирать непосредственно на подземные льды, сильнольдистые грунты, а также на используемые по принципу II заторфованные многолетнемерзлые грунты.

Расчеты оснований фундаментов мостов и труб следует производить:

а) при использовании твердомерзлых грунтов по принципу I – по несущей способности;

б) при использовании многолетнемерзлых грунтов по принципу II, а глинистых пластичномерзлых и по принципу I – по несущей способности и по деформациям.

Допускается не определять осадки оснований фундаментов мостов:

а) всех систем и пролетов при опирании фундаментов на многолетнемерзлые грунты, используемые по принципу I, за исключением пластичномерзлых глинистых грунтов;

б) внешне статически определимых систем железнодорожных мостов с пролетами до 55 м и автодорожных с пролетами до 105 м при опирании фундаментов на используемые по принципу II скальные и другие малосжимаемые при оттаивании грунты.

Расчеты оснований труб следует производить, как правило, по несущей способности. На сильносжимаемых при оттаивании грунтах, используемых по принципу II, основания труб следует рассчитывать по несущей способности и по деформациям, включая определение их осадки.

Второй принцип проектирования фундаментов на вечномёрзлых грунтах. Конструктивный метод

Второй принцип проектирования фундаментов на вечномёрзлых грунтах заключается в допущении протаивания грунта под зданием. Данный принцип осуществляется двумя методами: конструктивным и методом предпостроечного оттаивания. Рассмотрим эти методы подробнее.

Конструктивный метод заключается в приспособлении конструкций фундаментов и самих строений к неравномерной осадке оттаивающих грунтовых оснований.

Данный метод применяется в следующих случаях:

  • температура вечномерзлой толщи грунтов близка к «0°C»;
  • мёрзлый грунт при оттаивании становится относительно малопросадочным основанием S ≤ Su (гравелистые, щебёночные или песчаные грунты).

Следует подчеркнуть, что в этом случае под зданием с течением времени эксплуатации в результате действия тепловых потоков здания, образуется чаша оттаивания в многолетней мерзлоте. Формирование чаши оттаивания может продолжаться десятки лет, что подтверждается теплотехническими расчётами.

Формирования чаши оттаивания в многолетней мерзлоте под пятном застройки здания при строительстве его по второму принципу.

В результате построенное здание будет находиться в условиях неравномерной осадки, возникает высокая вероятность развитие деформаций с образованием трещин в надземных конструкциях.

Для того чтобы здание могло удовлетворительно эксплуатироваться в подобных условиях должны быть выполнены условия по приспособлению его к неравномерным деформациям (повышение жёсткости здания).

Если величина проектных осадок окажется больше предельных величин, то переходят ко второму методу строительства, допускающего протаивание грунтов вечной мерзлоты под зданием.

Второй принцип проектирования фундаментов на вечномёрзлых грунтах. Метод предпостроечного оттаивания

В данном случае уменьшение осадки оттаявших грунтов осуществляется путём предварительного уплотнения под действием собственного веса (см. метод электроосмоса в механике грунтов).

Метод предпостроечного оттаивания применяется в следующих случаях:

  • основание сооружения имеет неоднородные по сжимаемости в мёрзлом и талом состоянии грунты;
  • проектируемое сооружение имеет сосредоточенные избытки тепла (неравномерность оттаивания основания).

Необходимо помнить, что применение того или другого принципа строительства зависит:

  • от особенностей возводимых сооружений;
  • геокриологических условий места постройки.

Следует иметь в виду, что строить сооружения надо одним из двух принципов.

Нельзя сочетать эти принципы, как для соседних зданий и сооружений, так и для сооружений, расположенных в одном и том же районе. И особенно это относится для отдельного сооружения.

Расчет основания свай для фундаментов опор мостов по несущей способности многолетнемерзлых грунтов, используемых по принципу I, следует производить в последовательности, приведенной в Части I . При этом значение gn в формуле (1) следует принимать равным 1,4 независимо от числа свай в фундаменте и от положения подошвы ростверка по отношению к поверхности грунта. Значения коэффициентов gc и gt в формуле (2) допускается принимать равным 1,0.

Для кратковременной части нагрузок расчетные значения R и Raf допускается принимать с повышающим коэффициентом nt, равным: для свайных фундаментов железнодорожных мостов 1,35 – при одновременном действии постоянных и временных вертикальных нагрузок; 1,5 – при действии постоянных и временных совместно с временными горизонтальными нагрузками (включая сейсмические нагрузки); для свайных фундаментов автодорожных мостов – соответственно 1,5 и 1,75.

Для железнодорожных мостов на станционных и подъездных путях, городских, а также других мостов, на которых возможны систематические остановки на неопределенное время поездов или автотранспорта, значение коэффициента gc в формуле (2) следует принимать равным 1,0.

Расчет оснований свайных фундаментов по несущей способности многолетнемерзлых грунтов, используемых по принципу II, следует производить в соответствии с требованиями СП 24.13330.2011. При этом расчетное сопротивление оттаивающих грунтов под торцом свай следует принимать по СП 24.13330.2011, как для буровых свай.

Расчет по несущей способности оснований фундаментов мелкого заложения на многолетнемерзлых грунтах, используемых по принципу II, надлежит производить по СНиП 2.05.03.

Фундаменты береговых, переходных и промежуточных опор мостов на крутых склонах, а также фундаменты устоев при высоких насыпях в случаях расположения под несущим слоем пласта немерзлого или оттаивающего (в период эксплуатации моста) глинистого грунта или прослойки насыщенного водой песка, подстилаемого глинистым грунтом, необходимо рассчитывать по устойчивости против глубокого сдвига (смещения фундамента совместно с грунтом) по круглоцилиндрической или другой более опасной поверхности скольжения. Для указанных условий надлежит также проверять возможность появления местных оползневых сдвигов на ранее устойчивых склонах вследствие дополнительного их нагружения весом насыпи и опоры, нарушения устойчивости пластов грунта в процессе производства работ или изменения режима (уровня и скорости течения) подземных и поверхностных вод.

Фундаменты мостов, возводимых на многолетнемерзлых грунтах, используемых в качестве оснований по принципу II, следует рассчитывать для условий полного оттаивания грунтов основания независимо от их состояния (мерзлое или талое) в период строительства. Расчет по прочности и трещиностойкости свайных элементов следует производить на усилия в расчетных сечениях, возникающие как для мерзлого, так и оттаявшего состояния грунтов основания.

Свайные фундаменты надлежит рассчитывать на совместное действие вертикальных и горизонтальных сил и моментов, принимая перемещения фундаментов пропорциональными действующим усилиям. Независимо от принципа использования грунтов в качестве основания, не следует учитывать сопротивление грунтов перемещениям заглубленного в грунт ростверка фундаментов. В расчетах, включающих определение свободной длины свай, оттаявшие и пластичномерзлые грунты допускается рассматривать как линейно-деформируемую среду, характеризуемую коэффициентом постели, принимаемым как для немерзлых грунтов.

При использовании грунтов в качестве основания по принципу I в расчете допускается принимать, что каждый свайный элемент жестко заделан в твердомерзлом грунте на глубине d, считая от уровня, соответствующего расчетной (максимальной) температуре, при которой данный грунт переходит в твердомерзлое состояние; здесь d – диаметр или больший размер поперечного сечения элемента в направлении действия внешних нагрузок.

В сейсмических районах фундаменты мостов допускается проектировать на любых грунтах, используемых в качестве основания по принципу I. Если грунты используются по принципу II, то следует предусматривать опирание подошвы фундаментов или нижних концов свай преимущественно на скальные или другие малосжимаемые при оттаивании грунты.

Особенности проектирования оснований и фундаментов нефтегазопроводов на многолетнемерзлых грунтах

Основания и фундаменты магистральных газо- и нефтепроводов (далее магистральные трубопроводы) следует проектировать в соответствии с указаниями раздела 7 СНиП 2.02.04-88 (актуализированная редакция) с учетом дополнительных требований, содержащихся в настоящем разделе, а также в СНиП 2.05.06.

В техническом задании на проектирование оснований и фундаментов магистральных трубопроводов дополнительно должны содержаться сведения о пределах изменения температуры транспортируемого по трубопроводу продукта.

При проектировании оснований и фундаментов магистральных трубопроводов следует учитывать:

  • магистральные трубопроводы, в соответствии с ГОСТ 27751, имеют I уровень ответственности;
  • транспортируемый по трубопроводу продукт может иметь как положительную, так и отрицательную температуру, что существенно влияет на тепловое и механическое взаимодействие трубопровода и мерзлых грунтов;
  • в качестве оснований магистральных трубопроводов не рекомендуется рассматривать участки с подземными льдами, наледями и буграми пучения, проявлениями термокарста, термоэрозии, солифлюкции, морозобойного растрескивания;
  • опасность прямого теплового и гидравлического воздействий транспортируемых нефти и нефтепродуктов на мерзлые грунты при авариях на магистральных трубопроводах.

Трубопроводы делят на: горячие участки (температура продукта в течение всего года положительная), теплые участки (температура продукта в течение года может быть и положительной и отрицательной, но среднегодовая температура выше 0°С) и холодные участки (среднегодовая температура продукта ниже 0°С). К первым относятся нефтепроводы на всем протяжении и газопроводы на небольшом протяжении после компрессорных станций, ко вторым и третьим – только газопроводы.

Прокладка трубопроводов в районах многолетнемерзлых грунтов может выполняться подземным (преимущественно в траншеях), наземным (по поверхности земли с обваловыванием или без) или надземным (на опорах) способами. Следует избегать частое чередование различных способов прокладки на сравнительно коротких расстояниях.

Для уменьшения зоны оттаивания мерзлого грунта следует применять автоматически действующие охлаждающие установки (с жидкостным или парожидкостным хладоносителем) и теплоизолирующие экраны. Теплоизоляционные экраны для наземной прокладки следует выполнять плоскими, для подземной – цилиндрическими.

При проектировании оснований и фундаментов трубопроводов в районах распространения многолетнемерзлых грунтов следует выполнять следующие расчеты:

  • расчет остывания транспортируемого по трубопроводу продукта с целью установления температуры по длине трубопровода, а также выявления его горячих, теплых и холодных участков (см. примечание к п.13.3 СНиП 2.02.04-88 (актуализированная редакция);
  • расчет глубины оттаивания и промерзания грунта в основании подземных и наземных трубопроводов;
  • расчеты по I и II группам предельных состояний с учетом процессов, происходящих в окружающем массиве грунта в результате устройства трубопровода (просадка и термокарст при оттаивании, пучение при промораживании).

Глубину оттаивания (промораживания) грунта следует выполнять численными методами, с учетом проектного срока эксплуатации трубопровода. Допускается глубину оттаивания многолетнемерзлых грунтов под центром горячих и теплых подземных трубопроводов, а также глубину промерзания грунта под центром холодных трубопроводов, расположенных на участках с многолетнемерзлыми грунтами не сливающегося типа допускается рассчитывать согласно указаниям рекомендуемого приложения М СНиП 2.02.04-88 (актуализированная редакция).

Расчетные нагрузки, воздействия и их сочетания при проектировании оснований и фундаментов магистральных трубопроводов в районах многолетнемерзлых грунтов следует принимать в соответствии с требованиями СНиП 2.01.07, СНиП 2.05.06.

Для совместного расчета системы «основание (вмещающий массив) — трубопровод» могут использоваться аналитические или численные (метод конечных элементов, метод конечных разностей и др.) методы. При использовании численных методов расчетная модель «основание – трубопровод» должна адекватно отражать конструктивные особенности трубопровода, характеристики многолетнемерзлых грунтов и схемы их взаимодействия.

Особенности проектирования оснований и фундаментов на склонах

Проектирование оснований и фундаментов на склонах (откосах) в районах распространения многолетнемерзлых грунтов следует выполнять по первой группе предельных состояний в соответствии с указаниями СП 22.13330.2011, с учетом снижения прочности мерзлых грунтов при увеличении температуры и длительности воздействия нагрузки, а также влияния геокриологических условий.

При проектировании оснований и фундаментов на склонах многолетнемерзлых грунтов и присклоновой территории следует рассматривать термодинамическое равновесие системы «сооружение-основание-склон» с учетом нормативных документов по инженерно-геологическим изысканиям для строительства (СНиП 11-02-96, СП 11-103-97, СП 11-105-97 (ч.I-IV)), а также следующих факторов:

  • крутизна, высота, протяженность, ширина и экспозиция склона;
  • проявление глубинных и солифлюкционных оползаний и нарушение растительного покрова, наледеобразование, бугры пучения, термокарст, термоэрозия;
  • мощность слоя и характер распространения многолетнемерзлых грунтов (сплошное, прерывистое, островное), наличие жильного и пластового льда, таликов, криопэгов;
  • температура мерзлого грунта во времени по глубине и простиранию склона (изотермы) на стадии строительства, эксплуатации и ликвидации объектов;
    особенности природных криогенных форм рельефа (глетчеры, курумы и др.), а также формирования техногенных форм (отвалы, карьеры, котлованы, выемки, насыпи и др.);
  • геокриологические условия (текстура, влажность, льдистость физико-механические свойства мерзлых и оттаивающих грунтов), а также характер напластования пород;
  • наличие сооружений на склонах, имеющиеся деформации сооружений, а также мероприятия по противооползневой защите;
  • интенсивность и характер техногенной нагрузки, особенности теплового и силового воздействия на склоне проектируемых сооружений по продолжительности, охвату территории, количественным значениям температуры, конструктивным особенностям сооружений.

Расчеты устойчивости склонов (откосов) и сооружений на них в районах распространения многолетнемерзлых грунтов, в отличие от талых грунтов, следует осуществлять с учетом температурного состояния грунтового массива.

В зависимости от температурного состояния грунтового массива следует рассматривать два основных типа криогенных оползней: 1 — мерзлые; 2 — оттаивающие. Кроме того, существуют различные типы смешанных криогенных оползней.

Прогноз устойчивости склонов и сооружений на них необходимо осуществлять на основании выполнения прогнозных теплотехнических расчетов, схематизации природных условий и определения поверхностей скольжения в мерзлых породах, а также возможности возникновения и развития солифлюкции.

Расчет местной и общей устойчивости системы «сооружение-основание-склон», должен производиться методами, удовлетворяющими условиям равновесия в предельном состоянии, с использованием программ, разработанных на основе общепринятых методов расчета устойчивости. Допускается применять другие методы расчета, результаты которых проверены опытом проектирования, строительства и эксплуатации. Расчеты выполняются на основное и особое сочетание нагрузок.

Поверхность скольжения в массиве мерзлых однородных грунтов, в основном, определяется положением изотермы наиболее высокой отрицательной температуры грунта, а в массиве неоднородных грунтов — наименьшими предельно-длительными значениями сопротивления сдвигу мерзлого грунта. Поверхность скольжения оттаивающего грунта (на солифлюкционных склонах и откосах) следует за границей оттаивания, которая практически параллельна поверхности склона и мощность оползающего слоя равна глубине оттаивания, определяется при геокриологических изысканиях и уточняется теплотехническим расчетом.

В теплое время года в некоторых случаях одновременно могут развиваться солифлюкция и глубинный оползень мерзлого грунта, что следует учитывать в расчетах по несущей способности оснований и при назначении противооползневых мероприятий.

Сила предельного сопротивления основания, сложенного дисперсными грунтами должна определяться, исходя из условия, что соотношение между нормальными и касательными напряжениями по всем поверхностям скольжения, соответствующее предельному состоянию основания, подчиняется зависимости

где φ
и c — расчетные значения угла внутреннего трения и удельного сцепления. Для мерзлых грунтов определяются предельно-длительные значения угла внутреннего трения φL и удельного сцепления cL при проведении испытаний на срез мерзлого грунта, для оттаивающих грунтов φsh и csh при проведении испытаний на неконсолидированный быстрый срез оттаивающего грунта по мерзлому слою в соответствии с ГОСТ 20276, ГОСТ 12248 и ГОСТ Р 53582-2009.

Расчетные значения φ и с определяются по опытным данным. Для сооружений III уровня ответственности и предварительных расчетов устойчивости оснований допускается расчетные значения φL,
cL, φsh и csh.

Коэффициент надежности γn по ответственности сооружений принимается равным 1,2; 0,95 и 0,9 соответственно для сооружений I-го; II-го и III-го уровней ответственности (ГОСТ 27751-88).

Коэффициент условий работы γc принимается равным: для мерзлых дисперсных грунтов — 1,0; для оттаивающих — 0,85.

При строительстве на склонах мерзлых пород следует применять преимущественно принцип I использования многолетнемерзлых грунтов, при условии, что в течение всего периода эксплуатации будет обеспечена отрицательная температура, требуемая по расчету устойчивости склона и несущей способности оснований. Принцип II использования многолетнемерзлых грунтов допускается при строительстве на склонах, с учетом требований п.п. 6.1.3, 6.1.4 и 6.1.6.

При использовании многолетнемерзлых грунтов по принципу I следует выполнять прогноз температурного режима и, в случае необходимости, специальные мероприятия по обеспечению проектной температуры мерзлого грунта и обеспечивать контроль температуры в течение всего периода эксплуатации. Для сохранения и понижения температуры мерзлых грунтов следует применять следующие мероприятия: агролесомелиорация, устройство теплозащитных экранов, водоотвод и др.

Многолетнемерзлые грунты на склонах и присклоновой территории, как правило, следует использовать по одному принципу. При строительстве на склонах рекомендуется максимальное сохранение и даже улучшение экологической обстановки за счет применения проектных, организационно-технологических решений и мероприятий по предотвращению оползания и нарушения экологического равновесия, обусловленного опасными геокриологическими процессами (термокарст, пучение, наледеобразование).

На склонах скальных и полускальных пород расчеты устойчивости и проектирования фундаментов допускается выполнять в соответствии с требованиями СП 22.13330.2011.

В качестве фундаментов сооружений на склонах мерзлых пород рекомендуется применять отдельно стоящие столбчатые фундаменты, сваи и ряды свай, прорезающие поверхность скольжения. Места расположения свай на склоне, количество, конструкция, размеры и расстояние между ними определяются на основании расчетов местной и общей устойчивости склонов и с учетом оползневого давления мерзлого грунта на сваи и нагрузок от сооружения.

В качестве инженерных сооружений, противодействующих оползанию мерзлых и оттаивающих грунтов, следует применять традиционные сооружения: контрфорсы, контрбанкеты, подпорные стены, ряды свай (СНиП 22-02-2003), расположение которых на склоне и между собой обосновывается расчетами из условия недопущения течения мерзлого и оттаивающего грунта между ними и не препятствующие фильтрации воды по склону. Места расположения и количество удерживающих сооружений на склоне обосновываются расчетами местной и общей устойчивости склона.

На склонах СОУ применяются в случаях практической невозможности или недостаточной эффективности других мероприятий для стабилизации склона и обеспечения на весь период эксплуатации температуры грунта, необходимой по расчету несущей способности основания.

Для солифлюкционных склонов в качестве оснований линейных сооружений (линий электропередач, трубопроводов, эстакад) следует применять обтекаемые фундаменты в виде отдельных свай, рядов свай, работающих в условиях обтекания их оттаивающим грунтом при соблюдении принципа оптимального сохранения природных условий на склонах (обеспечение фильтрации воды, сохранение растительности). Количество, размеры, глубина заделки свай в мерзлый грунт определяются расчетом с учетом оползневого давления оттаивающего грунта, горизонтальных нагрузок от сооружения, температуры и прочностных свойств мерзлого грунта.

Работы на склонах должны выполняться в зимний период. Выполнение работ в теплое время года допускается только после выполнения работ по стабилизации склона и обязательного проведения теплотехнического прогноза и расчетов общей и местной устойчивости склонов и сооружений на них.

Мероприятия по инженерной защите и охране окружающей среды следует проектировать комплексно с учетом геокриологических условий и прогноза их изменения в процессе строительства (с учетом поэтапности) и эксплуатации объектов. Осуществление мероприятий инженерной защиты не должно приводить к активизации опасных геокриологических процессов на склонах и примыкающих территориях. Техническая эффективность и надежность сооружений и мероприятий инженерной защиты должны подтверждаться расчетами, а в обоснованных случаях — моделированием (натурным, физическим, математическим).

Для стабилизации склонов наряду с инженерными сооружениями следует применять мероприятия по снижению температуры мерзлых грунтов и уменьшению глубины сезонного оттаивания (агролесомелиорация, устройство теплозащитных экранов, водоотвод), упрочнение грунта (замена и армирование) с учетом настоящего документа. На склонах должен быть организован беспрепятственный сток поверхностных вод, исключено застаивание вод на бессточных участках, и попадание на склон вод с присклоновой территории.

В процессе строительства, эксплуатации и ликвидации сооружений на склонах и присклоновой территории выполняется мониторинг устойчивости склонов и сооружений, по проекту, позволяющему контролировать поверхностные и глубинные перемещения грунта. На объектах I и II степени ответственности необходимо организовать стационарные наблюдения за оползневыми процессами с установкой контрольно-измерительной аппаратуры в скважинах в нескольких створах по простиранию склона и выполнением маркшейдерских наблюдений.

Читать по теме:

  • Основания и фундаменты в районах распространения вечномерзлых грунтов. Часть I
  • Основания и фундаменты в районах распространения вечномерзлых грунтов. Часть II
  • Основания и фундаменты в районах распространения вечномерзлых грунтов. Часть III
  • Основания и фундаменты в районах распространения вечномерзлых грунтов. Часть IV

ЛИТЕРАТУРА 

  •  Болтрамович С.Ф. Геоморфология: Учеб. пособие для студ. высш. учеб. Заведений/С.Ф.Болтрамович. – М.: Издательский центр «Академия», 2005. – 528 с.
  • Кудрявцева В.А. Общее мерзлотоведение (геокриология), изд. 2 /В.А.Кудрявцева. – М.: Издательство МГУ, 1978. – 464 с.
  • Малахов А.А. Краткий курс общей геологии/А.А.Малахов. – М.: Издательство «Высшая школа», 1969. – 232 с.
  • Сергеев Е.Е. Инженерная геология СССР в 8 томах. Т. 3. Восточная Сибирь/Е.Е.Сергеев. – М.: Издательство Московского ун-та, 1977. – 657 с.
  • Преснухин В.И., Ремизова М.А. «Строительство зданий и сооружений в районах многолетней мерзлоты»