Как называется часть платформы где фундамент выходит на поверхность земли?

Древние платформы выделены красным (щиты) и розовым (плиты) цветами, молодые платформы — серым цветом

У этого термина существуют и другие значения, см.

Платформа

.

Платфо́рма — крупный участок континентальной земной коры, характеризующийся относительно спокойным тектоническим режимом.

Размеры платформ достигают тысяч километров в поперечнике, а их площадь измеряется миллионами квадратных километров. Они занимают около 45% поверхности материков.

Строение платформ

В пределах платформ земная кора достигает мощности 35-40 км, а литосфера — 150—200 км (возможно до 400 км). Обычно выделяют два структурных этажа платформ:

  • Фундамент (англ.)русск. — нижний, более древний этаж. Он состоит из сильно дислоцированных и метаморфизованных пород.
  • Платформенный чехол — верхний, более молодой структурный этаж. Он представляет собой полого залегающую, иногда слабонарушенную толщу. Как правило, чехол сложен неметаморфизованными осадочными горными породами. Из магматических пород чаще всего встречаются траппы, иногда в основании чехла присутствуют вулканиты кислого состава.

Обычно платформенный чехол и фундамент разделены границей резкого регионального несогласия. Иногда между ними присутствует промежуточный структурный этаж и граница между разными ярусами является менее отчётливой.

Те участки платформ, где развит платформенный чехол, то есть присутствуют оба структурных этажа, называются плитами. Однако есть и участки, где чехол отсутствует и фундамент выходит на поверхность. Наиболее крупные из них называют щитами, а более мелкие массивами и выступами.

Классификация платформ

В зависимости от возраста фундамента выделяют:

  • Древние платформы (кратоны) с докембрийским кристаллическим фундаментом. Платформы данного типа занимают около 40% от общей площади континентов и формируют древнейшие «ядра» материков.
  • Молодые платформы с фанерозойским фундаментом. Для них характерно наличие промежуточного структурного этажа. Молодые платформы занимают около 5% площади континентов и располагаются между древними платформами либо у них на периферии.

Литература

  • Хаин, В. Е. Геотектоника с основами геодинамики : учебник / Хаин, В. Е., Ломизе, М. Г.. — 3-е изд. — М. : КДУ, 2010. — 560 с. — 1000 экз. — ISBN 978-5-98227-700-8.

Земная кора неоднородна и состоит из разных структурных элементов. Изучение строения литосферы (твердой оболочки Земли) входит в число задач, которые ставит перед собой наука география. Щиты — это одни из таких элементов. Именно о них пойдет речь в данной информационной статье.

Земная кора и её строение

Основными структурными элементами земной коры являются литосферные плиты, которые могут быть континентальными или океаническими. Эти два типа отличаются друг от друга по строению (поперечному разрезу): в плитах континентального типа присутствует гранитный слой.

Платформами называют самые стабильные (в тектоническом плане) части литосферных плит Земли. В то же время они выступают ядрами (основой) для материков. Кроме них в пределах литосферных плит также выделяются орогенные (складчатые) пояса — эпиплатформенные и эпигеосинклинальные.

Платформа — это наиболее устойчивая структура земной коры, которая сформировалась там, где сотни миллионов лет назад существовали мощные горные системы. Со временем они разрушились, а поверхность на этом месте выровнялась. Так образовывается мощная и устойчивая структура — фундамент. В дальнейшем на нем начинают накапливаться осадочные породы, постепенно создавая мощный слой (чехол).

Все существующие на Земле платформы делятся на древние (в англоязычной литературе их часто именуют кратонами) и молодые. Ниже на карте представлены основные (древние) платформы нашей планеты. Они отмечены красноватым оттенком.

как называется часть платформы где фундамент выходит на поверхность земли

Структуру земной коры изучает наука география (7 класс). Далее мы более детально рассмотрим строение платформы.

Структурные элементы платформы (география, 7 класс)

Платформа состоит из двух слоев: кристаллического фундамента (залегает внизу) и осадочного чехла (покрывает фундамент).

В геологической науке выделяют структуры четырех порядков, из которых состоит любая платформа. Щит, плита, антеклизы и синеклизы — это основные из них. Далее мы будем рассматривать именно их. Ознакомления с этими структурами вполне достаточно для полноценного освоения школьного курса «География».

Щиты — это выходы на земную поверхность кристаллического фундамента платформы. Размеры таких выходов могут достигать 1000 и более километров в длину. Как правило, щиты характерны именно для древних платформенных структур.

Плиты — это обширные участки платформы, которые полностью покрыты осадочным чехлом. Очень часто молодые по возрасту платформы покрыты таким чехлом целиком. Поэтому их также называют плитами.

Антеклизы и синеклизы — это уже структуры 2-го порядка. Антеклизой называют пологие приподнятые участки плит. Синеклиза — это пологая впадина на плите или, что встречается реже, в пределах кристаллического щита.

В этой статье мы рассмотрим щиты древних платформ Евразии — Сибирской и Восточно-Европейской. Однако перед этим более подробно остановимся на вопросе «что такое щит».

География: щиты — это…

Понятие «щит» широко используется в геологической науке. Впервые этот термин был употреблен в Германии Эдуардом Зюссом (в 1903 году).

Щит — это обнажение кристаллического фундамента в пределах древней платформы. Таким образом, на поверхность Земли выходят докембрийские породы, возраст которых может достигать 3,5-4 миллиардов лет. Они, как правило, представлены гранитами, кварцитами, гнейсами, которые обнажаются на довольно обширных площадях.

как называется часть платформы где фундамент выходит на поверхность земли

Особенности строения щитов

Щиты являются основными и самыми устойчивыми структурами материков. Как правило, они окружены поясами, сложенными из горных пород кембрийского возраста. В рельефе щиты чаще всего выражены немного выпуклыми равнинами или небольшими возвышенностями.

Щиты окружены более подвижными и мобильными зонами, процессы горообразования в которых были зарегистрированы сравнительно недавно (по геологическим меркам — 100-200 миллионов лет назад).

Самые известные примеры щитов на нашей планете: Канадский, Украинский, Алданский, Балтийский. К этим областям приурочены крупные месторождения рудных полезных ископаемых (железная руда, медь, марганец, золото, никель и т. п.). Так, в пределах Алданского щита обнаружены мощные залежи медных руд и апатитов. На Украинском щите найдены крупнейшие в мире запасы железистых кварцитов (Криворожский бассейн).

как называется часть платформы где фундамент выходит на поверхность земли

История формирования и строение Сибирской платформы

Сибирская платформа — крупная геологическая область, занимающая огромную площадь в северо-восточной части Евразии. Это одна из древнейших платформ на планете, фундамент которой образовался еще в архее. После этого он не один раз покрывался водами морей, вследствие чего здесь сформировался мощный чехол осадочных пород.

Сибирская платформа имеет четкие границы на поверхности Земли: северная — это южные склоны гор Бырранга, западная — долина Енисея, южная граница проходит по Становому хребту, а восточная — по низовьям реки Лены.

Фундамент Сибирской платформы сложен породами архейского и протерозойского возраста, которые сильно смяты в складки. Это гнейсы, амфиболиты, сланцы, мрамор и другие. Их возраст довольно солидный: от 2,3 до 3,7 миллиарда лет. Осадочный чехол платформы сложен породами разных возрастов. Для северо-восточной оконечности платформы характерны интрузивные породы, которые формируют алмазные трубки.

Сибирская платформа необычайно богата различными минеральными ресурсами. Здесь есть крупные месторождения железных руд, слюды, апатитов, графита. К осадочному чехлу приурочены значительные запасы газа и нефти, а также каменного угля, алмазов, медных, никелевых руд и золота.

Геологическое строение Алданского щита

Алданский щит — это выступ кристаллического фундамента в пределах Сибирской платформы. Он локализован в её юго-восточной части и совпадает в рельефе с Алданским нагорьем и Становым хребтом. На юге и западе щит граничит с областью горообразования через систему глубинных разломов. На северо-востоке он перекрыт мощным чехлом осадочных отложений кембрийского возраста.

По отложениям (этажам) древнего фундамента Алданского щита можно проследить за эволюцией земной коры в целом. Так, в самом нижнем ярусе залегают гнейсы, сланцы, мрамор и гранулитовые кварциты. Следующий этаж заполнен осадочно-вулканогенными породами, зонально метаморфизованными. Верхний этаж представлен мощными отложениями обломочных и вулканогенных пород, а также крупными интрузиями.

В разные геологические эпохи тектонические процессы в Алданском щите много раз активизировались. Это случалось в палеозое, среднем мезозое и кайнозое. Это одна из отличительных особенностей данного кристаллического щита.

как называется часть платформы где фундамент выходит на поверхность земли

С территорией Алданского щита связаны месторождения многих полезных ископаемых. Так, здесь обнаружены и разведаны значительные запасы железных и медных руд, слюды, апатитов, кимберлитов, каменного угля, золота, а также различных полудрагоценных камней.

История формирования и строение Восточно-Европейской платформы

Восточно-Европейская платформа — одна из крупнейших и самых стабильных платформ современной земной коры. Она простирается от Скандинавского полуострова до Уральских гор, занимая почти всю Северную и Восточную Европу.

В её структуре выделяются два мощных выхода кристаллического фундамента — Украинский и Балтийский щит. Здесь на поверхность во многих местах выходят древние горные породы — преимущественно граниты и кварциты. Местами они образуют высокие скалы, обнажения и очень живописные каньоны. В пространстве между этими щитами расположены Белорусская и Воронежская антеклизы.

как называется часть платформы где фундамент выходит на поверхность земли

Фундамент платформы сложен магматическими и метаморфическими горными породами докембрийского возраста, которые густо изрезаны глубинными тектоническими разломами. Восточно-Европейская платформа сформировала свой фундамент в позднем протерозое. Чехол платформы состоит из слабодеформированных осадочных и вулканических пород разного геологического возраста.

Полезные ископаемые Восточно-Европейской платформы

В пределах Восточно-Европейской платформы разведаны богатейшие месторождения различных полезных ископаемых. Одни из них связаны с фундаментом данной геологической структуры, другие — с её осадочным чехлом.

К местам выхода на поверхность фундамента платформы приурочены огромные залежи железных руд (Кривбасс, Курская магнитная аномалия, Кременчугский бассейн и другие), меди, титана, никелевых руд и апатитов. С осадочным чехлом платформы связаны месторождения природного газа (Волгоуральская нефтегазоносная провинция, Днепровско-Донецкая впадина и другие), каменного и бурого угля (Донбасс, Подмосковье), фосфоритов, бокситов и различного строительного сырья (известняк, мрамор, доломиты и т. д.).

Геологическое строение Украинского щита

Украинский кристаллический щит — это выступ фундамента Восточно-Европейской платформы на её юго-западной окраине. Он протянулся на тысячу километров (в пределах Украины и частично Белоруссии) от реки Горынь на севере до берегов Азовского моря на юге. На карте ниже он отмечен желтым цветом.

как называется часть платформы где фундамент выходит на поверхность земли

Максимальная ширина Украинского щита составляет 250 километров. Общая площадь его поверхности — примерно 135 тысяч квадратных километров.

Украинский щит сложен в основном магматическими и метаморфическими породами архейского возраста (это гнейсы, граниты, амфиболиты, мигматиты и прочие). Во многих местах эти кристаллические породы обнажаются, образуя красивейшие скалы, пороги и каскады на равнинных реках.

Полезные ископаемые Украинского щита

К выступам фундаментов древних платформ, как известно, приурочены рудные полезные ископаемые. И Украинский щит здесь — не исключение.

В пределах этой геологической структуры разведаны крупные запасы железных руд (Криворожский бассейн), урановых руд (Желтоводское и Терновское месторождения), циркониевых руд (Вольногорское месторождение), драгоценных и полудрагоценных камней, строительного сырья (в частности, в Житомирской и других областях Украины добывают гранит высочайшего качества). По общему минерально-ресурсному потенциалу Украинскому щиту практически нет равных как в Европе, так и в мире.

как называется часть платформы где фундамент выходит на поверхность земли

Встречаются на этом щите также полезные ископаемые осадочного типа. Их месторождения приурочены к незначительным по мощности (не более 50 метров) участкам чехла. В первую очередь, это бурый уголь Днепровского бассейна, а также марганцевые руды Никопольского бассейна.

Заключение

Изучение строения земной коры входит в круг задач, которые ставит перед собой наука география. Щиты — это структурные элементы древних платформ Земли. К ним, как правило, приурочены мощные месторождения рудных полезных ископаемых и полудрагоценного камня.

Алданский щит, а также Украинский — это самые крупные кристаллические выступы фундаментов на континенте Евразия. Первый из них расположен в России, в пределах Сибирской платформы, а второй — в Украине, на Восточно-Европейской платформе.

51

Вторая стадия развития геосинклинали называется также инверсионной, так как в это время происходит частичное обращение (инверсия) тектонического режима: на фоне прогиба начинают формироваться отдельные поднятия. Формируются эти поднятия, главным образом, в результате активной вулканической деятельности. Однако состав вулканических пород отличается

всравнении с первой стадией большей кислотностью и отвечает преимущественно андезитовому. Вокруг поднятий идёт накопление очень своеобразных мощных толщ терригенных пород, которые отличаются характерной ритмичной (однообразно повторяемой) слоистостью. В основании каждого ритма залегают грубозернистые породы (грубозернистые песчаники, гравелиты, иногда конгломераты), а вверх по напластованию наблюдается постепенный переход к более тонкозернистым породам, вплоть до глинистых, иногда до карбонатных. Сверху такой ритм опять перекрывается грубозернистой подошвой следующего, причём с очень резкой границей, и такая картина многократно повторяется по разрезу всей толщи. Слоистость такого типа получила название градационной. В других частях геосинклинали одновременно может происходить накопление мощных толщ карбонатных пород, в том числе рифовых известняков. С этой же стадией связано внедрение разнообразных сложных по составу интрузий (габбро-плагиогранитных,диоритгранодиоритовых,габбро-сиенитовых).На данной стадии отмечается частичная складчатая деформация осадочных и вулканогенных пород, во время которой они могут быть слабо метаморфизованы.

Вдальнейшем наступает третья стадия развития геосинклинали, характеризующаяся общей инверсией (поднятием всей территории) и общей складчатостью, в результате чего и образуется складчатая область. Этот процесс сопровождается глубоким метаморфизмом значительной части осадочных и магматических пород, накопившихся на предшествующих стадиях. Там, где при этом повышение температуры оказывается достаточно значительным, начинается частичное плавление метаморфизованных пород, то есть метаморфический процесс переходит в ультраметаморфический. В результате выплавляются большие объёмы гранитной магмы, которая внедряется в вышележащие слои и формирует многочисленные гранитные интрузии. В результате складчатости земная кора на соответствующем участке резко утолщается, а в результате метаморфизма и образования гранитных расплавов формируется гранитно-метаморфическийслой.

Заключительная стадия геосинклинального развития, иногда выделяемая

всамостоятельный – орогенный (горообразовательный) – этап отличается нарастающими восходящими тектоническими движениями, в результате которых формируются горные поднятия и разделяющие их прогибы. В прогибах и по периферии складчатой области в целом накапливаются мощные континентальные (в меньшей мере лагунные и прибрежно-морские)толщи грубообломочных терригенных пород, образованных из продуктов разрушения горных поднятий.

Установление стадийности геосинклинального развития позволило геологам сделать важный вывод: формирование складчатой области начинается

52

в океанических условиях на коре океанического типа, и лишь затем, в результате сложного многостадийного процесса на её территории формируется континентальная кора и она становится частью континента. Это говорит о направленном, эволюционном характере развития земной коры, сопровождающемся усложнением ее строения (континентальная кора в целом устроена сложнее океанической). Правда, некоторые геологи из числа сторонников геосинклинальной теории, выдвигали идею о возможности обратного процесса – превращения континентальной коры в океаническую. Но какимилибо достаточно достоверными геологическими наблюдениями эта идея не подкрепляется, да и с физико-химическойточки зрения возможность такого процесса оспаривается специалистами.

Платформы отличаются от складчатых областей не только залеганием пород в верхних частях их разреза, но и глубинным строением, в котором выделяются два структурных этажа. Верхний этаж – чехол – образован горизонтально или полого залегающими осадочными породами (редко с участием вулканических). Нижний – фундамент – породами, находящимися в складчатом залегании, обычно метаморфизованными. Из этого можно сделать вывод, что платформы образовались на месте бывших складчатых областей. Представить этот процесс можно следующим образом. После завершения орогенной стадии развития складчатой области наступает тектоническая стабилизация. Образовавшиеся горы разрушаются, на их месте формируется равнина. При этом многокилометровые толщи смятых в складки осадочных и магматических пород эродируются, и на поверхность могут быть выведены породы, залегавшие первоначально на большой глубине и подвергшиеся значительному метаморфизму. Так образуется поверхность платформенного фундамента. Далее на ней начинают накапливаться сносимые с сопредельных более возвышенных территорий внутриконтинентальные осадки. Периодически образовавшаяся платформа может частично заливаться водами мелкого эпиконтинентального моря, где также идут процессы осадконакопления. В результате формируется полого залегающий на складчатом и метаморфизованном основании осадочный чехол. Такая преемственность в развитии складчатых областей и платформ подтверждается наблюдающимися случаями прямого перехода структур складчатых областей в структуры чехла сопредельных более молодых платформ. Так, палеозойские складчатые структуры Алтае-Саянскойобласти на своемсеверо-западномпродолжении погружаются под более молодой(мезозойско-кайнозойский)чехол ЗападноСибирской молодой платформы.

Часть платформы может остаться не перекрытой осадочным чехлом, или же он оказывается размыт в более поздние эпохи. Такие участки платформ, где фундамент непосредственно выходит на поверхность, называются щи-

тами.

Как складчатые области, так и платформы могут подвергаться повторной тектонической активизации. Так как мощная и жесткая континентальная кора уже не способна подвергаться значительным пластическим деформациям, то обычно такая активизация выражается в глыбовых поднятиях от-

53

дельных территорий по системам субвертикальных разломов. В результате формируются активизированные или «возрожденные» глыбовые горы – такие, как современные горные системы Центральной Азии. Этот процесс так же, как и первичный орогенез в складчатых областях, сопровождается накоплением больших объёмов грубообломочных продуктов разрушения поднимающихся гор. К числу вторичных структур, которые могут накладываться и на платформы, и на складчатые области, относятся рифты. Это узкие протяженные зоны растяжения, ограниченные глубокими (уходящими в мантию) разломами. В платформенном чехле такие структуры обычно выражаются в виде сложно построенных грабенов, центральные части которых испытывают погружение и заполняются большими (в сравнении с окружающими территориями) объемами осадочного материала. По уходящим в мантию разломам в толщу земной коры и на поверхность проникают магматические расплавы мантийного происхождения – основные, ультраосновные, а также совсем экзотические (карбонатитовые, фосфатные и другие). Если подъем глубинных магм сопровождается взрывными процессами, образуются трубки взрыва – залегающие в осадочном чехле и уходящие на большую глубину трубообразные тела, сложенные обломками пород глубинного происхождения.

Систематическое изучение земной коры различных частей континентов позволило установить периодическую повторяемость комплекса тектонических процессов, которыми обусловлено развитие геосинклиналей и платформ. Описанный выше цикл геосинклинального развития, завершившись на одной территории, в дальнейшем повторяется на сопредельной. Это наилучшим образом выражается в периодичности проявлений общей складчатости. К тому же, эта стадия имеет особо важное значение, так как она фиксирует завершение процесса формирования складчатой области и перехода слагающей ее земной коры в качественно новое состояние – кору континентального типа. Наиболее полно изучена периодичность проявления процессов складчатости в фанерозое, где выделяются следующие эпохи складчатости: байкальская (завершение к концу протерозоя – началу фанерозоя), каледонская (конец силура – начало девона), герцинская (конец палеозоя), мезозойская или киммерийская (конец мезозоя) и альпийская (кайнозой, остается незавершенной). Каждая эпоха подразделяется на фазы. Еще в середине XX в. подавляющее большинство тектонистов было убеждено, что как эпохи, так и фазы складчатости проявлялись по всей Земле одновременно. Но теперь в отношении фаз складчатости это мнение не является столь однозначным – возможно, что время их проявления в пределах каждой складчатой области было индивидуальным. Но это не ставит под сомнение саму периодическую повторяемость процесса.

Таким образом, формирование земной коры континентального типа осуществляется за счет вещества океанической коры в результате продолжительного процесса, в котором выделяются определенные, закономерно сменяющие друг друга стадии. В разных частях современных материков этот процесс протекал не одновременно, а путем последовательного наращивания континентальной коры от более древних эпох складчатости к более молодым.

54

В результате площади континентов и общий объем континентальной коры, а соответственно и сложность ее геологического строения, должны были на протяжении геологической истории неуклонно увеличиваться. Установление этих закономерностей имеет важнейшее научное значение, и это является огромной и непреходящей исторической заслугой геосинклинальной теории и ученых, которые ее создали и развивали.

Однако имелся ряд объективных факторов, обусловивших неизбежную ограниченность самой этой теории рамками определенного этапа в развитии научного познания. И главным образом это связано с тем, что теория создавалась только на базе данных, полученных в результате изучения геологии континентов. Знания о строении океанической коры к тому времени были еще слишком незначительными и отрывочными, чтобы на них можно было всерьез опираться при разработке какой-либотектонической теории. Видимо, именно поэтому все закономерности, установленные в рамках геосинклинальной теории, остались чисто эмпирическими, то есть выведенными из обобщения совокупности множества наблюденных фактов. Лучшие ученые эпохи понимали, что этого недостаточно, и нужно дать выявленным закономерностям теоретическое объяснение, вскрыть механизм и движущие силы тектонических процессов. Но дать удовлетворительное объяснение причин направленного развития геосинклиналей так никому из них и не удалось.

По этой же причине при создании геосинклинальной теории не был и не мог быть в должной мере использован основной метод геологической науки — метод актуализма, заключающегося в опоре на сравнение процессов геологического прошлого с современными. Если геологическая история любой складчатой области на континенте уходит своими корнями в геологию океана, значит именно на дне океана надо искать современные аналоги обстановок, отвечающих ранним стадиям развития геосинклинали. И только отыскав, можно их изучить и понять, действительно ли все протекает в соответствии с изложенным в теории или какие-тофакты истолкованы не вполне правильно. А главное – попытаться найти новые данные, проливающие свет на причины закономерного хода процесса. Но вплоть до второй половины XX в. эти области океана оставались недоступны для изучения.

Забегая вперед, отметим, что современные аналоги обстановок, отвечающих различным стадиям развития складчатых областей, к настоящему времени найдены. Но закономерности их размещения на поверхности Земли оказались совсем не соответствующими представлениям о гипотетических «узких и протяженных прогибах» И поэтому сейчас большинство геологов в мире отказалось от использования термина «геосинклиналь», хотя все основные достижения геосинклинальной теории сохраняют свое значение. Только переосмыслены они уже по-новому.

Важнейшие геотектонические гипотезы.

Как сказано выше, в рамках геосинклинальной теории был установлен ряд важных закономерностей строения и развития земной коры. Но объяс-

55

нить причины проявления этих закономерностей оказалось значительно сложнее. Для этого ученым существенно недоставало надежных фактов, и потому неизбежно приходилось прибегать к различным гипотезам. Гипотезы, задачей которых было объяснение возникновения различных структурных элементов в составе земной коры, закономерностей их развития и эволюции Земли в целом, получили название геотектонических гипотез. Естественно, что создатели этих гипотез как правило пытались в рамках единой гипотетической модели объяснить как происхождение основных структурных элементов земной коры, так и развитие Земли в целом. На протяжении второй половины XIX в. и особенно ХХ в. были выдвинуты многие десятки геотектонических гипотез, в которых нередко отражались диаметрально противоположные воззрения на причины и направленность тектонических процессов. Многие из них, казалось, безвозвратно отвергались научной общественностью, однако с появлением новых фактов опять возрождались и приобретали новых сторонников, развивавших их далее. В этом разделе мы кратко рассмотрим лишь небольшую часть геотектонических гипотез – те, которые сыграли наиболее важную роль в развитии научной мысли.

Гипотеза контракции (от латинского contractio – сжатие) была выдвинута в30-хгг. XIX в. Эли де Бомоном и почти не подвергалась сомнению вплоть до начала ХХ века. Представление о неуклонном сжатии Земли логически вытекало из господствовавших тогда космогонических моделей, согласно которым земной шар первоначально находился в расплавленном состоянии, и с тех пор он постепенно остывает. При этом в начале должна остыть и стать твердой тонкая внешняя оболочка – земная кора (отсюда и происходит сам этот термин). Далее охлаждаются и уменьшаются в объеме внутренние части планеты, а земная кора морщинится подобно кожуре высыхающего яблока. Деформации земной коры должны распределяться не равномерно по всей поверхности Земли, а концентрироваться в зонах, где кора более пластична – и именно здесь образуются складчатые области. Эта простая и логичная модель была, в конечном счете, отвергнута по нескольким причинам. В начале было подсчитано, что в результате охлаждения Земли ее объем должен уменьшиться слишком незначительно, и не сможет обеспечить сокращение площади поверхности складчатых областей, которое достигается в результате складчатости. Другие вычисления показали, что одна лишь остаточная тепловая энергия Земли не может обеспечить ход тектонических процессов на протяжении многих миллионов лет – ее ресурсы должны были полностью исчерпаться за тысячелетия. Следовательно, в недрах Земли должен быть собственный внутренний источник энергии – а тогда отнюдь не очевидно, что Земля должна неуклонно охлаждаться. Когда был открыт один из таких возможных внутренних источников энергии – процесс радиоактивного распада, гипотеза контракции большинством геологов была признана несостоятельной.

Гипотеза расширения Земли, напротив, предполагает неуклонное увеличение объема нашей планеты. Такие идеи высказывались еще в конце XVIII в. шотландским геологом Дж. Хеттоном, а затем неоднократно возро-

56

ждались разными тектонистами (А. Холмс и др.) на протяжении всего ХХ в. Эта гипотеза хорошо объясняет наличие на Земле рифтовых структур, для возникновения которых нужны условия растяжения, а также океанических впадин. Образование последних вполне возможно в результате раскола и удаления друг от друга материков и последовательного заполнения образующихся промежутков веществом, поднимающимся из глубин мантии. По подсчетам, чтобы обеспечить такое расхождение только за счет увеличения объема Земли, ее диаметр с конца палеозоя должен был увеличиться на треть. Что может обеспечить такое расширение? В качестве возможного объяснения выдвигалось предположение, что вещество в ядре Земли находится в особом сверхплотном состоянии. Постепенно оно разуплотняется, и это приводит к увеличению объема планеты. Такое предположение остается чисто гипотетическим и пока не может быть проверено. К тому же, гипотеза расширения Земли сама по себе не может объяснить наличия в земной коре структур, сформировавшихся в условиях сжатия, и потому все равно не может применяться вне сочетания с какими-либодругими гипотезами.

Пульсационная гипотеза (В. Бухер, М.А. Усов и др.) является своего рода комбинацией двух предыдущих. Ее сторонники полагали, что в истории нашей планеты чередуются фазы увеличения и сокращения ее объема. При этом в эпохи расширения Земли на ее поверхности проявляются процессы растяжения и образуются связанные с ними геологические структуры. Одновременно активизируется магматическая деятельность. А в фазу уменьшения объема планеты в земной коре возникают напряжения горизонтального сжатия, активизируются процессы складчатости и метаморфизма. Объясняя причины чередования фаз расширения и сжатия, М.А. Усов предполагал, что фаза расширения начинается в результате накопления в глубинах Земли избытка тепловой энергии, что приводит к переходу больших масс мантийного вещества в расплавленное состояние. А смена расширения сжатием наступает в результате выноса этой накопившейся энергии на поверхность в результате магматической деятельности, снижения температур внутри Земли и следующего за этим гравитационного уплотнения вещества ее внутренних областей. Н.Е. Мартьянов высказывал предположение, что чередование фаз расширения и сжатия может быть связано с изменением параметров физических полей в космическом пространстве, что будет влиять на характеристики взаимодействия частиц на внутриатомном уровне. То есть, периодически расширяясь и сжимаясь, Земля «подстраивается» под изменение физических констант. Основным недостатком пульсационной гипотезы является ее несоответствие современной картине тектонических процессов. В настоящее время в земной коре существуют как зоны растяжения, так и области сжатия. Следовательно, и те, и другие процессы могут идти на планете одновременно, только на разных участках. И нет смысла предполагать необходимость их чередования во времени.

Гипотеза дрейфа материков была изложена в 1912 г. немецким геофизиком Альфредом Вегенером в книге «Происхождение материков и океанов». Главным ее отличием от всех выдвигавшихся ранее явилось смелое новатор-

57

ское предположение, что различные блоки земной коры не занимают извечно одно и то же неизменное положение, а могут перемещаться по поверхности Земли относительно друг друга. Отправной точкой гипотезы явилось замечавшееся многими и ранее удивительное совпадение контуров береговых линий континентов, находящихся на противоположных берегах Атлантического и Индийского океанов. Такое совпадение легко объяснить, предположив, что это осколки единого некогда материка, разошедшиеся в разные стороны. Этот гипотетический континент А. Вегенер назвал «Пангея», что означает «целостная земля». Но кроме сходства очертаний, А. Вегенер привел в доказательство существования Пангеи и другие данные: совпадение геологических разрезов и геологических структур на берегах ныне разобщенных континентов, общность животного и растительного мира этих материков в прошлые геологические эпохи. Палеонтологические данные были использованы А. Вегенером и его последователями для реконструкции истории раскола Пангеи: по ним можно было установить время, когда произошла потеря сухопутной связи между отдельными материками. Удивительно, что эта реконструкция почти полностью совпадает с современными реконструкциями движения литосферных плит, сделанных на основе совершенно других данных.

Использовались также результаты реконструкции климатической зональности прошлых геологических эпох, которая иногда оказывалась очень труднообъяснимой, если не принимать во внимание возможность перемещения континентов. Самым ярким примером такого рода является картина распространения пермо-карбоновогооледенения в южном полушарии. Его следы обнаружены в Южной Америке, Африке, Антарктиде, Австралии и даже в Индии, находящейся ныне по другую сторону экватора. При этом, например, в Бразилии установлено, что ледники перемещались со стороны нынешнего Атлантического океана. И приносили с собой валуны горных пород, характерных для Южной Африки! Можно еще добавить, что на материках нынешнего северного полушария нигде, за исключением Индии, признаков оледенения этого времени не обнаружено. На арктическом архипелаге Шпицберген вообще росли тропические леса! Удивительная картина, не правда ли? Но все становится на свои места, если мысленно собрать все современные материки в один континент по А Вегенеру. Тогда все области распространения ледников окажутся компактно размещенными вокруг одного центра, находившегося на юге Африки – то есть, видимо, в той части единого материка, которая тогда и находилась в районе полюса.

Гипотеза дрейфа материков по-новомуобъясняла и происхождение складчатых областей. Перед фронтом движущегося материка породы верхних слоев земной коры деформируются, сминаются в складки; отдельные блоки смещаются относительно друг друга по разломам, воздымаются и образуют горные сооружения. Это хорошо объясняет появления горных систем вдоль западного побережья Америки иАльпийско-Гималайскогопояса между южными материками и Евразией. Но вот образование более древних складчатых областей, образовавшихся до раскола Пангеи, объяснить таким

58

способом невозможно. Если, конечно, не допускать, что сама Пангея, в свою очередь, сформировалась в результате соединения существовавших ранее материков, чего гипотеза первоначально не предполагала.

Таким образом, гипотеза дрейфа материков давала простые и логичные объяснения многим фактам, не поддававшимся иному истолкованию. Поэтому она была с энтузиазмом встречена частью геологов. Но очень многие авторитетные ученые отнеслись к ней скептически. Некоторым было просто трудно принять казавшуюся сумасбродной идею, что материки, воспринимаемые нами как извечно покоящиеся на своих местах огромные массы кристаллических пород, на самом деле могут перемещаться по поверхности планеты. Чтобы обычное человеческое сознание допустило такую возможность, в нем должен произойти переворот не менее значительный, чем потребовался когда-тодля принятия идеи, что Земля (вроде бы, «очевидно» неподвижная) на самом деле движется вокруг Солнца. Взгляды Н. Коперника в свое время еще на протяжении сотни лет пытались опровергать не только невежественные люди, но и самые серьезные ученые. Подобная судьба постигла и идеи А. Вегенера. Противники новой гипотезы стали называться «фиксистами», так как они отстаивали мнение о неизменном нахождении материков и любых других крупных структурных элементов земной коры в одних и тех же изначально фиксированных местах земной поверхности. Те же кто, напротив, доказывал возможность горизонтальных перемещений крупных блоков земной коры, получили название «мобилистов». С тех пор научный спор между «фиксистами» и «мобилистами» определял основное направление развития теоретической мысли в геотектонике на протяжении ХХ века.

Поначалу полное преимущество оказалось за фиксистами. И дело было не только в трудностях восприятия новых взглядов. В самой гипотезе дрейфа континентов быстро обнаружилось одно очень слабое, притом ключевое звено – вопрос о механизме движения. А. Вегенер предполагал, что жесткие глыбы существенно гранитных материков способны передвигаться по более пластичному базальтовому слою. А причиной, вызвавшей раскол Пангеи и расхождение материков, явилось приливное трение Луны. В качестве другой возможной причины предполагалось действие центробежных сил вращения Земли, которое должно способствовать смещению континентальных масс от полюсов к экватору. Однако расчеты показали, что размеры этих сил слишком незначительны. К тому же, перемещение жестких гранитнометаморфических материков по столь же жесткому базальтовому слою невозможно с физической точки зрения. Поэтому к середине ХХ в. подавляющим большинством геологов гипотеза была отвергнута. Ее активные сторонники сохранялись в основном среди геологов стран южного полушария, которые не могли объяснить многие особенности геологии своих континентов без гипотезы об их былом единстве.

Гипотеза подкоровых течений выдвигалась на протяжении ХХ в. многими геологами в разнообразных вариантах, нередко в комбинациях с другими тектоническими гипотезами. Их авторы считали, что тектонические движения земной коры должны быть отражением процессов, протекающих в

59

глубинных геосферах. А так как вещество в глубинах Земли существует в условиях значительно более высоких температур, можно предполагать его способность к пластическому течению, хотя бы на отдельных участках. Первым автором подобных идей был ирландский геолог Д. Джоли. В 1924 г. он высказал мысль, что открытые к тому времени процессы радиоактивного распада являются главным энергетическим источником тектонических движений. Выделяемое в результате радиоактивного распада тепло может накапливаться под континентами (так как более мощная континентальная кора пропускает тепло медленнее, чем океаническая) и расплавлять породы подстилающего их базальтового слоя. В результате континенты оказываются способны «плыть» по размягченному и частично расплавленному базальту. Его оппоненты тут же указали, что данный процесс невозможен, так как температура плавления базальта на несколько сотен градусов выше, чем у гранита, и, следовательно, в случае накопления радиогенного тепла гранитный слой должен плавиться раньше базальтового.

Это учел южноафриканский геолог А. Дю Тойт, бывший в 30-40-егг. ХХ в. самым авторитетным последователем идей А. Вегенера. По его версии, накопление радиогенного тепла под континентами приводит к частичному подплавлению основания гранитного слоя, и это делает возможным движение континента по подстилающему базальту.

Другие авторы предполагали, что к пластическому течению способно вещество всей мантии в целом или значительной ее части. Среди них был А. Холмс, объединивший в 1930-егг. идею подкоровых течений с гипотезой расширения Земли. Он предположил, что такое расширение реализуется посредством восходящих конвекционных токов разогретого мантийного вещества. Над местами, где восходящий поток расходится в стороны, происходит раскол континента, и отдельные его части начинают уноситься мантийными потоками в разные стороны. А вещество, поднимающееся из глубин мантии, формирует новую кору молодого океана, образовавшегося между континентами. Такой процесс получил названиеспрединга или разрастания океанического дна. Эта идея А. Холмса вскоре была забыта, но много лет спустя получила новое рождение в трудах его учеников при разработке тектоники литосферных плит.

Ундационная гипотеза была выдвинута голландским тектонистом Р.У. ван Беммеленом, творчески развивавшим ее на протяжении30-60-хгг. ХХ века. Ван Беммелен полагал, что основная причина тектонических процессов заключается в стремлении любой природной системы к состоянию энергетического равновесия. Оно, однако, никогда окончательно не достигаетсяиз-затого, что установление равновесия на одном энергетическом уровне вызывает нарушение равновесных состояний на других уровнях. Идущие на атомномолекулярном уровнефизико-химическиепроцессы становятся причиной восходящих движений вещества в недрах Земли, в результате которых возникают поднятия – ундации. Но образование поднятия означает перераспределение масс, что приводит к нарушению гравитационного равновесия. В результате возникают компенсирующие такое нарушение горизонтальные пе-

60

ремещения, направленные от центральной части поднятия к его периферии. Ундации могут быть различными по масштабам – от локальных, захватывающих небольшие территории (источники которых расположены внутри земной коры), до планетарных, в зоне действия которых могут одновременно оказаться несколько континентов и океанов. Последние, названные Р.У. ван Беммеленом мегаундациями, имеют источник в самых низах мантии, где в результате физико-химическихпроцессов на ее границе с земным ядром возникают крупные восходящие потоки вещества. Под воздействием такого потока на поверхности Земли образуется обширное куполообразное поднятие. Земная кора на его своде раскалывается, а её отдельные обломки начинают смещаться к краям, что и может быть причиной движения континентов.

Ундационная гипотеза явилась, пожалуй, наиболее передовой для своего времени попыткой целостного, комплексного объяснения самых разнообразных тектонических процессов. В ней увязывались в единую систему и вертикальные (образование поднятий), и горизонтальные (дрейф континентов) движения земной коры. Некоторые идеи Р.У. ван Беммелена получили дальнейшее развитие в современных моделях плейт- и плюм-тектоники.

Тектоника литосферных плит.

Современная концепция, объясняющая основные закономерности тектонических процессов в глобальном (планетарном) масштабе создана в 60-70-егг. ХХ в. на мобилистской основе. Одним из основных ее положений является разделение литосферы Земли на относительно жесткие блоки (плиты), находящиеся в непрерывном движении друг относительно друга. Поэтому эта концепция еще называетсятектоникой литосферных плит илиплейт-

тектоникой (хотя на современной стадии ее развития такое название выглядит уже чересчур «узким»).

Выше мы отметили, что к середине ХХ в. мобилистские представления были подавляющим большинством геологов отвергнуты? Что же заставило к ним вернуться? И почему именно в 1960-егг. стало возможным создание новой тектонической теории?

Первым толчком послужили палеомагнитные данные, основанные на изучении остаточной намагниченности горных пород. Суть явления остаточной намагниченности, о котором мы уже говорили, заключается в том, что содержащиеся в горных породах частицы магнитных минералов сохраняют намагниченность, направление которой соответствует ориентировке магнитного поля Земли, существовавшего при образовании породы. Измеряя эту намагниченность, можно восстановить, как были ориентированы силовые линии магнитного поля Земли в любой точке земной поверхности в различные геологические эпохи. Такие исследования начали сразу после Второй Мировой Войны английские ученые. И выяснилось, что чем древнее эпоха, тем сильнее отличается ориентировка магнитного поля Земли от современной. Возникло предположение, что магнитные полюса Земли на протяжении ее геологической истории постоянно меняли свое положение. Это явление

Формирование рельефа Земли

Различные формы рельефа формируются под действием процессов, которые могут быть преимущественно внутренними или внешними.

Внутренние (эндогенные) — это процессы внутри Земли, в мантии, ядре, которые проявляются на поверхности Земли как разрушительные и созидательные. Внутренние процессы создают прежде всего крупные формы рельефа на поверхности Земли и определяют распределение суши и моря, высоту гор, резкость их очертаний. Результат их действия — глубинные разломы, глубинные складки и др.

Тектоническими (греческое слово «тектоника» означает строительство, строительное искусство) движениями земной коры называют перемещения вещества под влиянием процессов, происходящих в более глубоких недрах Земли. В результате этих движений возникают основные неровности рельефа на поверхности Земли. Зона проявления тектонических движений, которая распространяется до глубины около 700 км, получила название тектоносферы.

Своими корнями тектонические движения уходят в верхнюю мантию, так как причина глубинных тектонических движений — взаимодействие земной коры с верхней мантией. Их движущей силой является магма. Поток магмы, периодически устремляющийся к поверхности из недр планеты, обеспечивает процесс, называемый магматизмом.

В результате застывания магмы на глубине (интрузивный магматизм) возникают интрузивные тела (рис. 1) — пластовыеинтрузии (от лат. intrude — вталкиваю), дайки (от англ. dike, или dyke, буквально — преграда, стена из камня), батолиты (от греч. bathos — глубина и lithos — камень), штоки (нем. Stock, буквально — палка, ствол), лакколиты (греч. lakkos — яма, углубление и lithos — камень) и т. д.

Рис. 1. Формы интрузивных и эффузивных тел. Интрузии: I — батолит; 2 — шток; 3 — лакколит; 4 — лополит; 5 — дайка; 6 — силл; 7 — жила; 8 — паофиза. Эффузивы: 9 — лавовый поток; 10 — лавовый покров; 11 — купол; 12- некк

Пластовая интрузия — пластообразное тело застывшей на глубине магмы, имеющее форму слоя, контакты которого параллельны слоистости вмещающих горных пород.

Дайки — пластинообразные, четко ограниченные параллельными стенками тела интрузивных магматических пород, которые пронизывают вметающие их породы (или залегают несогласно с ними).

Батолит — крупный массив застывшей на глубине магмы, имеющий площадь, измеряемую десятками тысяч квадратных километров. Форма в плане обычно удлиненная или изометрическая (имеет приблизительно равные размеры по высоте, ширине и толщине).

Шток — интрузивное тело, в вертикальном разрезе имеющее форму колонны. В плане его форма изометричная, неправильная. От батолитов отличаются меньшими размерами.

Лакколиты — имеют грибообразную или куполообразную форму вышележащей поверхности и относительно плоскую нижнюю поверхность. Они образуются вязкими магмами, поступающими либо по дайкообразным подводящим каналам снизу, либо из силла, и, распространяясь по слоистости, приподнимают вмещающие вышележащие породы, не нарушая их слоистости. Лакколиты встречаются поодиночке либо группами. Размеры лакколитов сравнительно небольшие — от сотен метров до нескольких километров в диаметре.

Застывшая на поверхности Земли магма образует лавовые потоки и покровы. Это эффузивный тип магматизма. Современный эффузивный магматизм называется вулканизмом.

С магматизмом связано также возникновение землетрясений.

Платформа земной коры

Платформа (от франц. plat — плоский и forme — форма) — крупная (несколько тыс. км в поперечнике), относительно устойчивая часть земной коры, характеризующаяся очень низкой степенью сейсмичности.

Платформа имеет двухэтажное строение (рис. 2). Нижний этаж — фундамент — это древняя геосинклинальная область — образован метаморфизованными породами, верхний — чехол — морскими осадочными отложениями небольшой мощности, что свидетельствует о небольшой амплитуде колебательных движений.

Рис. 2. Строение платформы

Возраст платформ различен и определяется по времени становления фундамента. Наиболее древними являются платформы, фундамент которых образован смятыми в складки кристаллическими породами докембрия. Таких платформ на Земле десять (рис. 3).

Поверхность докембрийского кристаллического фундамента очень неровная. В одних местах он выходит на поверхность илизалегает вблизи нее, образуя щиты, в других — антеклизы (от греч. anti — против и klisis — наклонение) и синеклизы (от греч. syn — вместе, klisis — наклонение). Однако эти неровности перекрыты осадочными отложениями со спокойным, близким к горизонтальному залеганием. Осадочные породы могут быть собраны в пологие валы, куполовидные поднятия, ступенеобразные изгибы, а иногда наблюдаются и разрывные нарушения с вертикальным смешением пластов. Нарушения в залегании осадочных пород обусловлены неодинаковой скоростью и разными знаками колебательных движений блоков кристаллического фундамента.

Рис. 3. До кембрийские платформы: I — Северо-Американская; II — Восточно-Европейская; III — Сибирская; IV — Южно-Американская; V — Африкано-Аравийская; VI — Индийская; VII — Восточно-Китайская; VIII — Южно-Китайская; IX — Австралийская; X — Антарктическая

Фундамент более молодых платформ образован в периоды байкальской, каледонской или герцинской складчатости. Области мезозойской складчатости не принято называть платформами, хотя они и являются таковыми на сравнительно раннем этапе развития.

В рельефе платформам соответствуют равнины. Однако некоторые платформы испытали серьезную перестройку, выразившуюся в общем поднятии, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга. Так возникли складчато-глыбовые горы, примером которых могут служить горы Тянь-Шань, где возрождение горного рельефа произошло во время альпийского орогенеза.

На протяжении всей геологической истории в континентальной земной коре происходило наращивание площади платформ и сокращение геосинклинальных зон.

Внешние (экзогенные) процессы обусловлены поступающей на Землю энергией солнечного излучения. Экзогенные процессы сглаживают неровности, выравнивают поверхности, заполняют понижения. Они проявляются на земной поверхности и как разрушительные, и как созидательные.

Разрушительные процессы — это разрушение горных пород, происходящее из-за перепада температур, действия ветра, размывания потоками воды, движущимися ледниками. Созидательные процессы проявляются в накоплении переносимых водой и ветром частиц в понижениях суши, на дне водоемов.

Самым сложным внешним фактором является выветривание.

Выветривание — совокупность естественных процессов, приводящих к разрушению горных пород.

Выветривание условно подразделяется на физическое и химическое.

Основными причинами физического выветривания являются колебания температуры, связанные с суточными и сезонными изменениями. В результате перепалов температур образуются трещины. Вода, попадающая в них, замерзая и оттаивая, расширяет трещины. Так происходит выравнивание выступов горных пород, появляются осыпи.

Важнейшим фактором химического выветривания также является вода и растворенные в ней химические соединения. При этом значительную роль играют климатические условия и живые организмы, продукты жизнедеятельности которых влияют на состав и растворяющие свойства воды. Большой разрушительной силой обладает и корневая система растений.

Процесс выветривания приводит к образованию рыхлых продуктов разрушения горных пород, которые называются корой выветривания. Именно на ней постепенно образуется почва.

Из-за выветривания поверхность Земли все время обновляется, стираются следы прошлого. В то же время внешние процессы создают формы рельефа, обусловленные деятельностью рек, ледников, ветра. Все они образуют специфические формы рельефа — речные долины, овраги, ледниковые формы и т. д.

Древние оледенения и формы рельефа, образованные ледниками

Следы самого древнего оледенения были обнаружены в Северной Америке в районе Великих озер, а затем в Южной Америке и в Индии. Возраст этих ледниковых отложений около 2 млрд лет.

Следы второго — протерозойского — оледенения (15 000 млн лет назад) выявлены в Экваториальной и Южной Африке и в Австралии.

В конце протерозоя (650-620 млн лет назад) произошло третье, наиболее грандиозное оледенение — доксмбрийскос, или скандинавское. Следы его встречаются почти на всех материках.

Существует несколько гипотез о причинах возникновения оледенений. Факторы, положенные в основу этих гипотез, можно подразделить на астрономические и геологические.

К астрономическим факторам, вызывающим похолодание на Земле, относятся:

  • изменение наклона земной оси;
  • отклонение Земли от ее орбиты в сторону удаления от Солнца;
  • неравномерное тепловое излучение Солнца.

К геологическим факторам относят процессы горообразования, вулканическую деятельность, перемещение материков.

Согласно гипотезе дрейфа материков, огромные участки суши на протяжении истории развития земной коры периодически переходили из области теплого климата в области холодного климата, и наоборот.

Активизация вулканической деятельности, по мнению некоторых ученых, также приводит к изменению климата: одни считают, что это приводит к потеплению климата на Земле, а другие — что к похолоданию.

Ледники оказывают существенное влияние на подстилающую поверхность. Они сглаживают неровности рельефа и сносят обломки горных пород, расширяют речные долины. А кроме того, ледники создают специфические формы рельефа.

Различаются два вида рельефа, возникших благодаря деятельности ледника: созданный ледниковой эрозией (от лат. erosio — разъедание, разрушение) (рис. 4) и аккумулятивный (от лат. accumulatio — накопление) (рис. 5).

Ледниковой эрозией созданы троги, кары, цирки, карлинги, висячие долины, «бараньи лбы» и др.

Крупные древние ледники, переносящие крупные обломки горных пород, являлись мощными разрушителями горных пород. Они расширяли днища речных долин и делали более крутыми борта долин, по которым двигались. В результате такой деятельности древних ледников возникли троги или троговые долины — долины, имеющие U-образный профиль.

Рис. 4. Формы рельефа, созданные ледниковой эрозией

Рис. 5. Аккумулятивные формы ледникового рельефа

В результате раскалывания горных пород замерзающей в трещинах водой и выноса образовавшихся обломков сползающими вниз ледниками возникли кары — чашеобразные углубления кресловидной формы в привершинной части гор с крутыми скалистыми склонами и пологовогнутым днищем.

Большой развитый кар, имеющий выход в нижележащий трог, получил название ледникового цирка. Он располагается в верхних частях трогов в горах, где когда-либо существовали крупные долинные ледники. Многие цирки имеют крутые борта высотой в несколько десятков метров. Для днищ цирков характерны озерные котловины, выработанные ледниками.

Островершинные формы, образующиеся в ходе развития трех или более каров но разные стороны от одной горы, называются карлингами. Часто они имеют правильную пирамидальную форму.

В местах, где крупные долинные ледники принимали небольшие ледники-притоки, образуются висячие долины.

«Бараньи лбы» — это небольшие округлые холмы и возвышенности, сложенные плотными коренными породами, которые были хорошо отполированы ледниками. Их склоны асимметричны: склон, обращенный вниз по движению ледника, немного круче. Часто на поверхности этих форм имеется ледниковая штриховка, причем штрихи ориентированы по направлению движения ледника.

К аккумулятивным формам ледникового рельефа относят моренные холмы и гряды, озы, друмлины, зандры и др. (см. рис. 5).

Моренные гряды — валообразные скопления продуктов разрушения горных пород, отложенных ледниками, высотой до нескольких десятков метров, шириной до нескольких километров и, в большинстве случаев, длиной во много километров.

Часто край покровного ледника не был ровным, а разделялся на довольно четко обособленные лопасти. Вероятно, во время отложения этих морен край ледника длительное время находился почти в неподвижном (стационарном) состоянии. При этом формировалась не одна гряда, а целый комплекс гряд, холмов и котловин.

Друмлины — вытянутые холмы, по форме напоминающие ложку, перевернутую выпуклой стороной кверху. Эти формы состоят из материала отложенной морены, а в некоторых (но не во всех) случаях имеют ядро из коренных пород. Друмлины обычно встречаются большими группами — по нескольку десятков или даже сотен. Большинство этих форм рельефа имеет размеры 900-2000 м в длину, 180-460 м в ширину и 15-45 м в высоту. Валуны на их поверхности нередко ориентированы длинными осями по направлению движения льда, которое осуществлялось от крутого склона к пологому. По-видимому, друмлины формировались, когда нижние слои льда утрачивали подвижность из-за перегрузки обломочным материалом и перекрывались движущимися верхними слоями, которые перерабатывали материал отложенной морены и создавали характерные формы друмлинов. Такие формы широко распространены в ландшафтах основных морен областей покровного оледенения.

Зандровыеравнины сложены материалом, принесенным потоками талых ледниковых вод, и обычно примыкают к внешнему краю конечных морен. Эти грубосортированные отложения состоят из песка, гальки, глины и валунов (максимальный размер которых зависел от транспортирующей способности потоков).

Озы — это длинные узкие извилистые гряды, сложенные в основном сортированными отложениями (песком, гравием, галькой и др.), протяженностью от нескольких метров до нескольких километров и высотой до 45 м. Озы формировались в результате деятельности подледниковых потоков талых вод, протекавших по трещинам и промоинам в теле ледника.

Камы — это небольшие крутосклонные холмы и короткие гряды неправильной формы, сложенные сортированными отложениями. Эта форма рельефа может быть образована как водно-ледниковыми потоками, так и просто текучей водой.

Многолетняя, или вечная, мерзлота — толщи мерзлых горных пород, не оттаивающих в течение долгого времени — от нескольких лет до десятков и сотен тысяч лет. Многолетняя мерзлота влияет на рельеф, так как вода и лед имеют разную плотность, вследствие чего замерзающие и оттаивающие породы подвержены деформации.

Наиболее распространенный тип деформации мерзлых грунтов — пучение, связанное с увеличением объема воды при замерзании. Возникающие при этом положительные формы рельефа называются буграми пучения. Высота их обычно не более 2 м. Если бугры пучения образовались в пределах торфянистой тундры, то их обычно называют торфяными буграми.

Летом верхний слой многолетней мерзлоты оттаивает. Лежащая ниже мерзлота мешает талой воде просачиваться вниз; вода, если не находит стока в реку или озеро, остается на месте до осени, когда снова замерзает. В результате талая вода оказывается между водонепроницаемым слоем постоянной мерзлоты снизу и постепенно нарастающим сверху вниз слоем новой, сезонной мерзлоты. Лсд занимает больший объем, чем вода. Вода, оказавшись между двумя слоями льда под огромным давлением, ищет выход в сезонномерзлом слое и прорывает его. Если она изливается на поверхность, образуется ледяное поле — наледь. Если же на поверхности плотный мохово-травяной покров или слой торфа, вода может не прорвать его, а только приподнять,
растекшись пол ним. Замерзнув затем, она образует ледяное ядро бугра; постепенно нарастая, такой бугор может достигнуть высоты 70 м при диаметре до 200 м. Такие формы рельефа называются гидролакколитами (рис. 6).

Рис. 6. Гидролакколит

Работа текучих вод

Под текучими водами понимают всю воду, стекающую по поверхности суши, начиная от мелких струек, возникающих во время дождей или таяния снега, до самых крупных рек, например Амазонки.

Текучие воды являются самым мощным из всех внешних факторов, преобразующих поверхность материков. Разрушая горные породы и перенося продукты их разрушения в виде гальки, песка, глины и растворенных веществ, текучие воды способны в течение миллионов лет сравнять с землей самые высокие горные хребты. При этом вынесенные ими в моря и океаны продукты разрушения горных пород служат главным материалом, из которого возникают мощные толщи новых осадочных пород.

Разрушительная деятельность текучих вод может иметь форму плоскостного смыва или линейного размыва.

Геологическая деятельность плоскостного смыва заключается в том, что дождевые и талые воды, стекающие по склону, подхватывают мелкие продукты выветривания и сносят их вниз. Таким образом склоны выполаживаются, а продукты смыва отлагаются внизу.

Под линейным размывом понимают разрушительную деятельность водных потоков, текущих в определенном русле. Линейный размыв приводит к расчленению склонов оврагами и речными долинами.

В районах, где имеются легко растворимые горные породы (известняк, гипс, каменная соль), образуются карстовые формы — воронки, пещеры и пр.

Процессы, вызванные действием силы тяжести. К процессам, вызванным действием силы тяжести, относят прежде всего оползни, обвалы и осыпи.

Рис. 7. Схема оползня: 1 — первоначальное положение склона; 2 — ненарушенная часть склона; 3 — оползень; 4 — поверхность скольжения; 5 — тыловой шов; 6- надоползневый уступ; 7- подошвы оползня; 8- родник (источник)

Рис. 8. Элементы оползня: 1 — поверхность скольжения; 2 — тело оползня; 3 — стенка срыва; 4 — положение склона до оползневого смешения; 5 — коренные породы склона

Массы земли могут сползать по склонам с едва заметной скоростью. В других случаях скорость смешения продуктов выветривания оказывается более высокой (например, метры в сутки), иногда большие объемы горных пород обрушиваются со скоростью, превышающей скорость экспресса.

Обвалы происходят локально и приурочены к верхнему поясу гор с резко расчлененным рельефом.

Оползни (рис. 7) возникают, когда природными процессами или людьми нарушается устойчивость склона. Силы связности грунтов или горных пород оказываются в какой-то момент меньше, чем сила тяжести, и вся масса приходит в движение. Элементы оползня представлены на рис. 8.

В ряде горных узлов вместе с осыпанием обвал является ведущим склоновым процессом. В нижних поясах гор обвалы приурочены к склонам, активно подмываемым водотоками, либо к молодым тектоническим разрывным нарушениям, выраженным в рельефе в виде отвесных и очень крутых (более 35°) склонов.

Обвалы масс горных пород могут иметь катастрофический характер, представляющий опасность для судов и прибрежных поселений. Обвалы и осыпи вдоль дорог препятствуют работе транспорта. В узких долинах они могут нарушить сток и привести к затоплению.

Осыпи в горах случаются довольно часто. Осыпание тяготеет к верхнему поясу высокогорий, а в нижнем поясе проявляется лишь на склонах, подмываемых водотоками. Преобладающими формами осыпания являются «шелушение» всего склона или значительного его участка, а также интегральный процесс обваливания со скальных стенок.

Работа ветра (эоловые процессы)

Под работой ветра понимается изменение поверхности Земли под влиянием движущихся воздушных струй. Ветер может разрушать горные породы, переносить мелкий обломочный материал, собирать его в определенных местах или отлагать на поверхности земли ровным слоем. Чем больше скорость ветра, тем сильнее производимая им работа.

Песчаный холм, образованный в результате ветровой деятельности, — это дюна.

Дюны распространены повсюду, где на поверхность выходят незакрепленные пески, а скорость ветра достаточна для их перемещения.

Их размеры определяются объемом поступающего песка, скоростью ветра и крутизной склонов. Максимальная скорость движения дюн — около 30 м в год, а высота — до 300 м.

Форму дюн определяют направление и постоянство ветра, а также особенности окружающего ландшафта (рис. 9).

Барханы — рельефные подвижные образования из песка в пустынях, навеваемые ветром и не закрепленные корнями растений. Они возникают, только когда направление преобладающего ветра достаточно постоянно (рис. 10).

Барханы могут достигать в высоту от полуметра до 100 метров. По форме напоминают подкову или серп, а в поперечном разрезе имеют длинный и пологий наветренный склон и короткий подветренный.

Рис. 9. Формы дюн в зависимости от направления ветра

Рис. 10. Барханы

В зависимости от режима ветров скопления барханов принимают различные формы:

  • барханные гряды, вытянутые вдоль господствующих ветров или их равнодействующей;
  • барханные цепи, поперечные взаимопротивоположным ветрам;
  • барханные пирамиды и т. п.

Не будучи закрепленными, барханы под действием ветров могут менять форму и перемешаться со скоростью от нескольких сантиметров до сотен метров в год.